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SUMMARY 

The main goal of this thesis was to develop biodegradable composite material of sustainable origin 

for possible usage in automotive industry. Increased demand for usage of sustainable and 

biodegradable natural materials initiated wider production of biocomposites. For that reason, 

composite materials made of sustainable polylactide (PLA) polymer and Spartium junceum L. 

(SJL) bast fibres were designed and produced in the course of research for this thesis. Three fibre 

extraction (maceration) methods were investigated: water retting (WR), osmotic degumming (OD) 

and alkali retting under the influence of microwave energy (MW). It was proven that long lasting 

conventional maceration method can be succesfully replaced by ecologically favourable method 

using microwaves. Tensile strength of MW treated fibres show approximately 60 % higher strength 

compared to conventional WR and 30 % compared to novel OD method. Functionalization of fibres 

was carried out using montmorillonite (MMT) nanoclay particles added as a flame retardant 

nanofiller, and citric acid (CA) as an environmentally friendly crosslinker. Effectiveness of the 

conducted modifications was examined according to the relevant standardized methods used in 

current industrial and manufacturing processes (testing of morphological, mechanical, chemical and 

thermal properties of the final composite material). MMT/CA modified fibres show better thermal 

stability in comparison to the reference fibre (MWR) which is confirmed with the increase in 

crystallinity and proved by thermogravimetric analysis by shifting of fibre's onset decomposition 

temperature to higher value. Fibre/polymer interface was also positively influenced by MMT/CA 

fibre modification. Therefore, such material has showed higher decomposition temperature at 

certain weight loss, as well as higher strength and modulus values in comparison to samples without 

CA. The results indicate formation of crosslinking caused by interactions between the carboxylic 

acid and –OH groups of cellulose fibre or PLA. Biodegradability of developed composite materials 

was examined with serine endopeptidase. Concentration of 50 wt% enzyme reveals very positive 

result of composite degradation. After 5 days of enzymatic treatment, composite material reinforced 

with MMT/CA modified fibres lost 2.5 % of its initial weight. Additionally, the possibility of 

residue stem utilization in bioenergy production was investigated. Proximate and ultimate analysis 

of residues after MW maceration showed increase in content of positive biomass quality indicators. 

The obtained results confirmed SJL biomass as promising feedstock for solid biofuel production. 

The significance of the proposed research lies in the application of innovative, sustainable raw 

materials for the production of new advanced products of wide application. 

KEYWORDS: Spartium junceum L., PLA, sustainability, green composites, nanoparticles, flame 

retardant, biodegradation, bioenergy, solid biofuel. 
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SAŽETAK 

Glavni cilj ovog rada bio je razvoj biorazgradivog kompozitnog materijala održivog porijekla 

koji bi se mogao koristiti u automobilskoj industriji. Naime, upotrebi ovakvih materijala u 

automobilskoj industriji pogoduje Direktiva 2000/53/EC Europske unije koja traži da zemlje 

članice do 2015. godine nanovo iskoriste minimalno 95 % otpadnog vozila čime bi se osiguralo 

da na deponiju završi manje od 5 % otpadnog vozila. Povećana potražnja za korištenjem 

održivih i biorazgradivih prirodnih materijala, čime se ujedno smanjuje onečišćenje okoliša, 

potaknula je širu proizvodnju biokompozita. Iz tog razloga su se dizajnirali i proizveli 

kompozitni materijali izrađeni od održivog polilaktidnog (PLA) polimera i Spartium junceum 

L. (SJL) stabljičnih vlakana koja su se koristila kao ojačalo cijelog sustava. Prirodna vlakna 

koja se koriste kao ojačala u kompozitnim materijalima su: lan, juta, konoplja, sisal, ramija, 

kenaf, abaka, kokosova vlakna, vlakna ananasa, šećerne repice, vlakna iz rižine ljuske, itd. Izbor 

vlakana ovisi o svojstvima koje određeno vlakno posjeduje, ali i o njihovoj dostupnosti. 

Kompozitni materijal će biti jeftiniji ukoliko su sirovine koje se koriste u njegovoj proizvodnji 

lokalno dostupne. Oko 30 % ukupnih vlakana koja se koriste u Europskoj autoindustriji se 

proizvodi u zemljama članicama EU, a 70 % se uvozi iz Istočne Europe i Azije. U gospodarsko 

nerazvijenijim dijelovima Hrvatske (otoci i Dalmatinsko zaleđe) raste brnistra (Spartium 

junceum L.) – samonikla biljka od koje se dobivaju vlakna izuzetne čvrstoće. Brnistra većinom 

raste u Mediteranskim zemljama. Kroz povijest je imala široki spektar namjena (izrada mirisa 

i boja od cvjetova, košara od stabljika, tekstilnih materijala od vlakana). Vlakna su ipak njen 

najvažniji produkt pa se u današnje vrijeme ponovno javio interes za njihovom proizvodnjom.  

Istražene su tri metode ekstrakcije vlakana (maceracija): močenje u vodi, osmotsko 

degumiranje (OD) i močenje u alkalnom mediju pod utjecajem energije mikrovalova (MW). 

Dokazano je da se tradicionalni način maceracije stabljike SJL (brnistre) močenjem u vodi koji 

se koristio do sada, može uspješno zamijeniti ekološki povoljnom metodom korištenjem 

mikrovalova. S obzirom da prirodna vlakna ne pokazuju dobru kompatibilnost s nepolarnim 

polimernim matricama potrebno je modificirati vlakna ili matricu kako bi se postigla dobra 

svojstva prijanjanja između vlakna i matrice te kako bi takav kompozitni materijal imao 

poboljšana svojstva. U ovom radu vlakna brnistre su  oplemenjena korištenjem tri metode 

modifikacije: dodatna obrada s lužinom niske koncentracije (1F), obrada s lužinom i 

nanoglinom (2F) te obrada s nanoglinom i limunskom kiselinom (3F). Montmorilonitna 

nanoglina (MMT) se koristila u ulozi usporivača gorenja, a limunska kiselina (CA) kao ekološki 

pogodno sredstvo za umrežavanje. Kompozitni materijal se izradio metodom kompresijskog 

prešanja polimera u obliku peleta te kratkih nasumično orijentiranih vlakana brnistre pri 
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temperaturi od 170 °C. Ispitala su se njegova strukturna, mehanička i termalna svojstva kako 

bi se utvrdila mogućnost zadovoljavanja minimalnih zahtjeva automobilske industrije. S 

obzirom na sve veću osviještenost o okolišu i problemima globalnog rasta otpada, te zbog 

potrebe za pronalaženjem obnovljivih rješenja ispitala se i mogućnost razgradnje ovakvog 

materijala primjenom enzima endopeptidaze koja pripada skupini proteaza zaslužnih za 

biorazgradnju PLA. Dodatno, kako je već poznato da proizvodnja prirodnih vlakana za sobom 

ostavlja popriličnu količinu otpada koji je tijekom procesa maceracije najčešće kemijski 

tretiran, potrebno je naći rješenje njegove oporabe. Kod ekstrakcije vlakana brnistre metodom 

močenja u lužini uz korištenje mikrovalne energije količina takvog otpada iznosila je oko 90 % 

te se stoga istražila i mogućnost upotrebe takvog otpada kao biomase u proizvodnji krutih 

biogoriva. 

Prilikom utvrđivanja optimalne metode ekstrakcije vlakana brnistre napravljeno je močenje u 

vodi u trajanju od 480 sati pri rasponu temperature od 30,6 °C do 33,0 °C nakon čega je slijedila 

mehanička obrada uklanjanja drvenastih dijelova močene stabljike kako bi se dobila vlakna. 

Metoda osmotskog degumiranja rađena je pri 30 °C u trajanju od 672 sata nakon čega je 

ponovno slijedila mehanička obrada sa svrhom dobivanja vlakana. U trećoj metodi je brnistra 

močena u 5 % otopini natrijeve lužine i podvrgnuta mikrovalnoj energiji snage 900 W i 

frekvenciji od 2,45 GHz u trajanju od 10 minuta nakon čega su se vlakna jednostavno izdvojila 

pod mlazom vode. Kompozitni materijal se izradio postupkom kompresijskog prešanja PLA 

polimera i vlakana (masenog udjela 20 %) pri temperaturi 170 °C, opterećenju od 3,9 kN/m2 te 

vremenskom trajanju od 5 minuta. Prilikom ispitivanja mogućnosti biorazgradnje PLA i 

kompozitnog materijala korišteno je približno 20 mg uzorka koji se tijekom 5 dana pri 

temperaturi 37 °C obrađivao u puferskoj otopini različitih koncentracija enzima uz omjer 

kupelji 1:50. U izradi ovog rada korišten je niz metoda ispitivanja vlakna i kompozitnog 

materijala. Kemijske komponente neobrađenih i obrađenih vlakana poput celuloze, 

hemiceluloze, lignina, pepela i ekstrahiranih tvari određene su uvriježenim biotehničkim 

metodama TAPPI T211 om-02, TAPPI T204 cm-97 i TAPPI T222 om-11. Primjenom 

vibracijske metode ispitivanja, uz korištenje ''Vibroskop'' i ''Vibrodyn'' uređaja (Lenzing 

Instruments GmbH, Gampern, AT) ispitale su se finoća i vlačna čvrstoća pojedinačnih vlakana 

brnistre prema normi HRN EN ISO 5079:2003 – Tekstilna vlakna – Određivanje prekidne sile 

i prekidnog istezanja pojedinačnih vlakana, te HRN EN ISO 1973:2008 - Tekstilna vlakna - 

Određivanje duljinske mase -- Gravimetrijska metoda i titrajna metoda. Predopterećenje, brzina 

ispitivanja, te duljina ispitivanog uzorka iznosile su redom 1500 mg, 3 mm/min, odnosno 5 mm. 

Morfologija vlakana i njihovih kompozita, kao i kemijska analiza određeni su primjenom 
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skenirajućeg elektronskog mikroskopa FE-SEM (Tescan GmbH, Brno, CZ) pri 20 kV i 

različitim povećanjima, uz detektor za energijski razlučujuću rendgensku spektrometrijau EDS 

(Bruker Nano GmbH, Berlin, DE). Prije mikroskopiranja uzorci su se pripremili naslojavanjem 

u uređaju za ''naparivanje'' (Quorum Technologies Ltd, Laughton, UK) s tankim slojem Au/Pd 

kako bi se povećala njihova električna vodljivost neophodna za ovakvo ispitivanje. Kako bi se 

ispitala efikasnost predobrada prirodnog vlakna iz brnistre, a kasnije i svojstva adhezije 

vlakno/polimer u kompozitnom materijalu, koristila se infracrvena spektroskopija s 

Fourierovom transformacijom (FTIR), uz ATR metodu. Svi spektri su snimljeni u području 

4000 cm-1-380 cm-1, uz rezoluciju 4 cm-1, te su prikazani kao srednja vrijednost četiri mjerenja. 

FTIR se dodatno koristio i kao alat za određivanje efekata biorazgradnje uz pomoć određivanja 

karbonilnog indeksa, pri istim uvjetima kao i za sva prethodna ispitivanja. Određivanje 

hidrofilnosti vlakna napravljeno je određivanjem zeta potencijala primjenom uređaja za 

elektrokinetičku analizu SurPASS (Anton Paar GmbH, Graz, AT). Termalne karakteristike 

vlakana i njihovih kompozita ispitane su korištenjem termogravimetrijske analize i 

kalorimetrije. TGA analiza (Perkin Elmer Ltd, Beaconsfield, UK) je odrađena pri uvjetima 

zagrijavanja uzorka od 30 °C do 800 °C s brzinom zagrijavanja 10 °C/min u struji plinovitog 

dušika brzine protoka 30 ml/min, dok je kalorimetrija sagorijevanja odrađena u skladu s 

normom ASTM D7309. Vlačna čvrstoća kompozita se ispitala na univerzalnom uređaju za 

ispitivanje Instron 5584 (Instron GmbH, Darmstadt, DE) pri brzini ispitivanja 3 mm/min i 

radnoj udaljenosti 20 mm. Biorazgradnja uzorka djelovanjem enzima istražena je određivanjem 

gubitka mase uzorka pri čemu se koristila analitička vaga uz preciznost očitanja 0.0001 g. 

Istraživanje mogućnosti upotrebe ostataka brnistre nakon maceracije obuhvatilo je sljedeće 

metode ispitivanja: određivanje sadržaja vode prema normi HRN EN 18134-2:2015, pepela 

prema normi HRN EN ISO 18122:2015, koksa prema normi EN 15148:2009, fiksiranog ugljika 

računskom metodom prema normi EN 15148:2009, te sadržaja hlapive tvari prema HRN EN 

18123:2015. Ukupni sadržaj ugljika, vodika, dušika i sumpora  proveden je metodom suhog 

spaljivanja na Vario, Macro CHNS analizatoru (Elementar Analysensysteme GmbH, 

Langenselbold, DE) prema protokolima za ugljik, vodik i dušik HRN EN 16948:2015 te sumpor 

HRN EN 15289:2011, dok je sadržaj kisika određen računski. Gornja ogrjevna vrijednost je 

utvrđena prema HRN EN 14918:2010 normi pomoću adijabatskog kalorimetra IKA C200 (MZ 

- Analysentechnik GmbH, Mainz, DE). Sadržaj makro elemenata je određen prema HRN EN 

16967:2015 normi korištenjem atomskog apsorpcijskog spektroskopa Analyst 400 (Perkin 

Elmer Ltd, Beaconsfield, UK) s uzorcima prethodno pripremljenim mikrovalnom digestijom 

prema HRN EN 16968:2015 normi. 
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Istraživanje u sklopu ovog doktorskog rada započelo je određivanjem najpogodnije metode 

maceracije u smislu ekološke i ekonomske isplativosti. S obzirom na činjenice koje su učvrstile 

svoje temelje još u dalekoj prošlosti, vlakna brnistre su se smjestila u skupinu prirodnih 

stabljičnih vlakana, te su se u ispitivanju koristile metode maceracije karakteristične za 

dobivanje vlakana lana, a samim time su se i uspoređivala svojstva vlakana iz brnistre i lana 

kako bi se utvrdila moguća područja njihove primjene. Obrada vlakana u alkalnom mediju niske 

koncentracije primjenom mikrovalne energije pokazuje najbolje rezultate, i to ne samo u 

ekološko-ekonomskom smislu već i u kvalitativnom. Čvrstoća, na ovaj način dobivenih 

vlakana, se povećala za 60 % i 30 % u usporedbi s ostale dvije ispitane metode maceracije – 

močenje u vodi i osmotsko degumiranje. Vlakna proizvedena pomoću mikrovalne energije su 

finija od drugih ispitanih vlakana za 10 %, a pokazuju najveće prekidno istezanje od 6,03 %. 

Repriza ovakvog vlakna se kreće u rasponu od 7 do 8 %. FTIR spektri brnistrinih vlakana nastali 

različitim metodama maceracije potvrđuju efektivnost mikrovalno potpomognute maceracije 

što je vidljivo iz odsustva vrpci poput 2850 cm-1, 1730 cm-1, 1537 cm-1, 1239 cm-1 koje redom 

predstavljaju voskove i ulja, pektin i lignin, te iz povećanog intenziteta pikova pri 1000 i 985 

cm-1 koji ukazuju na bolji razvoj sekundarne stanične stijenke što između ostalog pridonosi i 

većoj čvrstoći takvih vlakana. Nakon što su se ispitala svojstva vlakana uvidjela se mogućnost 

njihove primjene u izradi kompozitnih materijala u kojima bi vlakno brnistre imalo ulogu 

ojačala polimerne matrice. S obzirom da su neki od najvažnijih faktora koji utječu na 

učinkovitost ovakvih kompozitnih materijala kemijski sastav, struktura, mehanička svojstva 

njegovih komponenata kao i njihova međusobna interakcija koja je otežana činjenicom da je 

prirodno vlakno hidrofilnije od polimerne matrice, potrebno je dodatno utjecati na navedena 

svojstva. Vlakna dobivena maceracijom u lužini su predstavljena kao referentna vlakna 

(MWR), a modifikacije su uključivale dodatnu obradu s lužinom (1F), obradu s 

montmorilonitnom nanoglinom i lužinom (2F), te obrada s nanoglinom i limunskom kiselinom 

(3F). 3F vlakna su pokazala porast u sadržaju celuloze, te smanjen sadržaj hemiceluloze s 

obzirom na druga modificirana vlakna, a u usporedbi s MWR te su vrijednosti iznosile 0,6 %, 

odnosno 12,4 %. SEM i EDS analize površine vlakana potvrdile su promjene uslijed 

modifikacija. SEM slike ukazuju na povećanje hrapavosti koja je posljedica nanosa MMT 

čestica na površinu vlakana, što je potvrđeno i EDS analizom. FTIR spektar vlakna MWR 

pokazuje veći intenzitet vrpci (pika) pri 2844 cm-1 i 2900 cm-1 u odnosu na druga vlakna što 

ukazuje na dodatno uklanjanje pektina, voskova i masti uslijed kemijskih modifikacija. Također 

se kod MWR vlakna, za razliku od ostalih, pojavljuje pik pri 1506 cm-1 karakterističan za lignin 

dok su ostali pikovi vezani za lignin neprimjetni ili pokazuju mali intenzitet. Prema 
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vrijednostima indeksa ukupne kristalnosti (TCI) koji je proporcionalan stupnju kristaliničnosti 

celuloze, te indeksa lateralne sređenosti (LOI) koji se odnosi na stupanj sređenosti bočnih 

lanaca celuloze, vlakno 3F pokazuje veću kristaličnost, kao i bolji poredak u odnosu na MWR, 

i to za 11,2 %, odnosno 19,6 %. Određivanjem zeta potencijala uočeno je da obrada s MMT i 

CA utječe na smanjenje hidrofilnosti, te su također 3F vlakna pokazala bolju termalnu stabilnost 

u odnosu na MWR što je vidljivo u pomaku početne temperature razgradnje s 355 °C na 357 

°C. Vlakna 2F pokazuju čvrstoću veću za 6,8 % , a vlakna 3F povećanje za 4,6 % u odnosu na 

MWR. Nižu čvrstoću uzorka 1F najvjerojatnije je uzrokovalo dugotrajnije izlaganje natrijevoj 

lužini prilikom njegove modifikacije. Ispitivanjem finoće vlakana nakon modificiranja, uzorak 

3F je pokazao nešto grublja vlakna te je 63,3 % vlakana iz ove skupine imalo finoću u rasponu 

35-45 dtex. Modificirana vlakna su se koristila kao ojačala za PLA matricu te su izrađeni 

sljedeći kompozitni materijali: kompozit izrađen od MWR vlakana i PLA (CR), kompozit 

izrađen od 1F vlakana i PLA (C1), kompozit izrađen od 2F vlakana i PLA (C2) te kompozit 

izrađen od 3F vlakana i PLA (C3). Vrsta provedene modifikacije vlakana utjecala je na čvrstoću 

kompozitnog materijala. Kompozit ojačan vlaknima 2F pokazuje najnižu čvrstoću uzrokovanu 

neadekvatnom adhezijom vlakna i polimera. Iako vlakna 1F pokazuju smanjenje čvrstoće 

uslijed ponovljene obrade s lužinom, kompozit ojačan ovakvim vlaknima pokazuje porast 

čvrstoće za 115 % u odnosu na C2. Kompozitni materijal ojačan vlaknima 3F pokazuje najveći 

porast čvrstoće i to za 135 % u odnosu na C2 ukazujući na istovremeni porast žilavosti ovakvih 

materijala. Razlika u čvrstoći kompozita ojačanih vlaknima 2F i 3F uzrokovana je dodatkom 

limunske kiseline pri modificiranju vlakana 3F što je potvrđeno i SEM analizom poprečnog 

presjeka kompozitnog materijala. Uočilo se smanjeno izvlačenje vlakana te njihova bolja 

adhezija s PLA matricom nego što je to uočeno kod ostalih ispitanih kompozita. FTIR analiza 

također potvrđuje bolju adheziju kod uzorka C3 što je vidljivo iz jačeg intenziteta pika pri 1750 

cm-1 značajnog za C=O istezanje te smanjenog intenziteta pika pri 1645 cm-1 karakterističnog 

za –OH vibacije istezanja čime se potvrđuje čvršća povezanost vlakna, polimera i punila. FTIR 

analiza kod uzorka C2 pokazuje mali intenzitet pikova u području 1030-460 cm-1 koje je 

karakteristično za metalne okside što nam potvrđuje nedovoljno jaku vezu između vlakana 

brnistre, PLA i nanogline. Prekidno istezanje svih ispitanih kompozita je veće nego što je kod 

čistog PLA. Uzorak C3 je pokazao najveće prekidno istezanje, čak za 43,7 % veće od čistog 

PLA što ukazuje na žilaviji materijal koji se može deformirati prije nego dođe do loma.  

U sklopu ovog rada se napravilo i matematičko modeliranje sa svrhom predviđanja mehaničkih 

svojstava kompozitnih materijala, točnije kod predviđanja vlačne čvrstoće i modula 

elastičnosti. Koristila su se dva najpoznatija modela koja se inače primijenjuju u slučaju 
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kompozita ojačanih kratkim nasumično orijentiranim vlaknima. Hirschov model je pokazao 

relativno dobro poklapanje s eksperimentalnim rezultatima – kod određivanja vlačne čvrstoće 

predviđene vrijednosti su bile za 10 % manje od eksperimentalno određenih vrijednosti vlačne 

čvrstoće, dok je kod određivanja modula elastičnosti razlika bila veća, tj. predviđene vrijednosti 

su bile za 20 % veće od eksperimentalnih osim kod uzorka C3 čija je eksperimentalna vrijednost 

bila za 20 % veća od one predviđene matematičkim modelom. Prilikom ispitivanja termalnih 

svojstava kompozitnih materijala ojačanih referentnim i modificiranim vlaknima brnistre te 

korištenjem termogravimetrijske analize definirao se temperaturni raspon od 30 °C - 300 °C u 

kojem su ispitani materijali pokazali stabilnost. Uzorak C3 koji u svom sastavu ima i nanoglinu 

i limunsku kiselinu pokazao je puno bolje rezultate od uzorka C2 čiju lošu adheziju s polimerom 

potvrđuju i sve korištene metode ispitivanja. Određivanje energije aktivacije pokazalo je 41,7 

% nižu energiju potrebnu za termalnu razgradnju. Određivanjem temperature staklišta uvidjelo 

se da dodatak vlakana snižava Tg, a ujedno se snižava i temperatura hladne kristalizacije, te 

uzorak C3 počinje kristalizirati na nižoj temperaturi od ostalih ispitanih materijala, točnije pri 

100 °C. DSC grafički prikaz ponašanja kompozitnih  uzoraka uslijed zagrijavanja pokazuje 

dvostruki pik taljenja koji ukazuje na prisustvo dva različita tipa kristala unutar uzorka, dok 

čisti PLA pokazuje samo jedan pik taljenja te najveću kristaličnost.  

Dodavanje nanogline u sustav utjecalo je na sniženje vrijednosti otpuštene topline, a time i na 

manju zapaljivost ovakvih materijala. C2 uzorak je otpustio 35 % manje topline u usporedbi s 

čistim PLA, dok je C3 otpustio 18 % manje topline. Uslijed ispitivanja razgradnje čistog PLA 

i njegovih kompozitnih materijala djelovanjem enzima različitih koncentracija pri temperaturi 

od 37 °C uvidjelo se da je nakon 5 dana enzimatske razgradnje najveći gubitak mase materijala 

nastao korištenjem enzima masene koncentracije 50 %, te je npr. kod uzorka C3 došlo do 

gubitka mase od 2,5 % u odnosu na početnu težinu materijala prije procesa razgradnje. FTIR 

ispitivanje uzoraka prije i nakon razgradnje potvrdilo je test ispitivanja gubitka mase.  

Naime, za glavne pokazatelje razgradnje uzete su vrpce pri 1750 cm-1-1755 cm-1 i 1454 cm-1-

1455 cm-1 koje predstavljaju karbonilnu, odnosno metilnu skupinu. Pomak ovih vrpci prema 

višim frekvencijama (višim valnim duljinama) ukazuje na razgradnju uzorka. Također se 

izračunao karbonilni indeks (CI) koji je pokazao najvišu vrijednost kod uzoraka koji su bili 

podvrgnuti 20 wt% i 50 wt% enzima. Prilikom utvrđivanja potencijala ostataka brnistre nakon 

ekstrakcije vlakana kod korištenja za neposredno izgaranje utvrđen je nizak sadržaj vode (6,5 

% - 7,5 %) i pepela (ispod 5 %). Sadržaj fiksiranog ugljika i hlapivih tvari iznosio je 13,2 % i 

75 %. Gornja ogrjevna vrijednost, kao najvažniji parametar, iznosila je 17,2-18,8 MJ/kg što 

ukazuje na kvalitetnu biomasu koja se može upotrijebiti za proizvodnju krutih goriva.   
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Maceracija vlakana uz obradu s natrijevom lužinom pod djelovanjem mikrovalova može se 

primijeniti u proizvodnji vlakana brnistre uz značajno smanjenje utroška energije i vremena 

proizvodnje. Površinska modifikacija vlakana korištenjem lužine i nanočestica uz umrežavanje 

s ekološki pogodnim sredstvom utjecala je na poboljšanje adhezije vlakna i polimera, te na 

smanjenje zapaljivosti vlakana brnistre, a ujedno su modificirana vlakna pokazala i najveći 

sadržaj celuloze. Kompozitni materijal ojačan najuspješnije modificiranim vlaknima pokazuje 

povećanje čvrstoće i modula elastičnosti za 135 %, odnosno 122 % u odnosu na C2. Prilikom 

ispitivanja biorazgradnje tijekom 5 dana i pri temperaturi od 37 °C, uzorak C3 je izgubio 2,5 % 

od svoje početne mase što ukazuje na veliku vjerojatnost razgradnje ovog uzorka unutar 6 

mjeseci za minimalno 90 %. Ostaci brnistre nakon proizvodnje vlakana mogu se koristiti kao 

biomasa u proizvodnji krutih biogoriva. Revitaliziranje proizvodnje vlakana iz brnistre 

dugoročno može pridonijeti unaprjeđenju nedovoljno razvijenih dijelova Hrvatske kroz 

primjenu ''domaće'' obnovljive sirovine u stvaranju proizvoda visoke dodane vrijednosti koji 

imaju široki način primjene.  

 

KLJUČNE RIJEČI: Spartium junceum L., PLA, održivost, zeleni kompoziti, nano čestice, 

usporivači gorenja, biorazgradnja, bioenergija, kruta biogoriva. 
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production lies in large residue content after obtaining fibres – the loss of approximately 90 % 

of initial  Spartium junceum L. weight. The usage of Spartium fibres in the service of 

reinforcement for biopolymer matrix (PLA) was investigated due to the need for renewable 

solutions in the development of new materials. Obtained results target further research into the 

direction of application of Spartium fibres and PLA in the production of green composites. The 

aim was to prove that developed product can be categorized under the biodegradable group by 

investigating its degradation properties using serine endopeptidase enzyme. The results show 

positive degradation effect while using 50 wt% (on weight of material) enzyme concentration 

over a five-day treatment. Stem residues of Spartium junceum L. plant derived from salt water 

and microwave maceration were investigated for their potential as biomass for biofuel 

production. Examination of its energy properties consisted of determining the amount of non-

combustable and combustable matter content and higher and lower heating values. The results 

show low moisture content (6.5 % - 7.5 %), ash content was below 5%, higher values of fixed 

carbon and volatile matter content of 13.2 % and 75 %, respectively. Higher heating value was 

17.2-18.8 MJ/kg, indicating that good quality biomass can be used most effectively in solid 

biofuel production. 
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1 INTRODUCTION 

With continuous growth for more than 50 years, global plastic production reached 350 million 

tones in 2017 [1]. Since petroleum resources are still extensively used in producing these 

polymers, it leads to great concerns in terms of economic and environmental sustainability. 

Utilization of petroleum resources can be alleviated by bioplastic development using biological 

resources or more precisely annually renewable resources [2]. Although the durability of 

plastics was initially regarded as a great advantage, environmental problem caused by the 

disposal of plastic waste (huge volumes of landfill space around the world, disposal of plastic 

waste in the marine environment) occurred [3, 4]. It was led to the conclusion that production 

of bioplastic - whether it is biobased or biodegradable, would partially solve the problem about 

its disposal.  

1.1 Biobased polymers 

Bioplastics represent a wide spectrum of thermoplastics that are obtained from biological and 

fossil resources or combination of both. There is a great trend to derive new compounds from 

biological resources either by industrial biotechnology or by chemical methods. Figure 1 shows 

all commercially realized pathways from biomass via different building blocks and monomers 

to biobased polymers. 

 
Figure 1: Pathways to biobased polymers [5] 
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Description of currently used biobased polymers is shown in Table 1. 

Table 1: Some of the currently used biobased polymers [5-13] 

Biobased polymer Description 
PLA Renewable, biocompatible and biodegradable polymer. Obtained by ring opening 

polymerization of lactide or by direct polycondensation of lactic acid. Its thermal stability 
and impact resistance are inferior to those of conventional polymers used for thermoplastic 
applications. PLA composites are some approaches that are being used to improve the 
stiffness, permeability, crystallinity, and thermal stability of PLA. PLA targeted markets 
include packaging, textiles and biomedical applications. 

PHA Renewable, biocompatible and biodegradable polyesters synthesized by microorganisms 
from various substrates as carbon sources. They are very sensitive to temperature and 
shear. Additives, blends and natural fibre reinforced composites are the most obvious ways 
to overcome these problems. 

STARCH Bioplastic composed of both linear and branched polysaccharides (amylose and 
amylopectin).Thermoplastic starch (TPS) can be obtained from starch by disrupting its 
molecular interactions by using plasticizers and by using other complex operations as 
devolatilization, melt-melt mixing and morphology control. Extreme moisture sensitivity 
of starch leads to limited practical application. Therefore, blending of TPS with other 
polymers and additives is desirable. 

CELLULOSE Obtained from wood and cotton or in the pulp form extracted from agricultural byproducts 
such as bagasse, stalks and cropstraws. Cellulose based materials are used in two forms 
on an industrial scale - Regenerated cellulose used for fibre and film production and 
Cellulose esters used in coatings, biomedical uses and other usual plastic applications. 

CHITIN 
& 
CHITOSAN 

They are renewable, biocompatible, biodegradable and non-toxic polymers with excellent 
adsorption properties. Chitin is natural polysaccharide and is the supporting material in 
many invertebrate animals such as insects and crustaceans. The deacetylated chitin is 
known as chitosan. Chitosan has been explored for films and fibres and have generated 
great interest in biomedical applications. 

PROTEINS Proteineous biomaterial based on the origin proteins can be classified as plant and animal 
proteins. Water, glycerols, fatty acids and oils are commonly used plasticizers for proteins. 
Wet and dry processing are used to obtain biomaterials from proteins. Such biomaterials 
are used in food and pharmaceutical applications, as well as in tissue engineering 
applications. 

BIO-PBS Obtained by direct polymerization of biobased succinic acid and 1,4-butanediol. 
BIO-PTT Aromatic polyester obtained by polycondensation reaction between biobased 1,3-

propanediol with terephthalic acid. It displays very good strength, stiffness, toughness and 
heat resistance and finds applications in carpets, textiles, films, packaging and automotive 
and high performance applications. 

BIO-PE Manufactured by polymerization of biobased ethylene. Polyethylene is one of the largely 
used polymers in the world. 

BIO-PP It can be obtained in similar way as that of PE. Involves production of biobutanol and its 
dehydration to butylenes and other intermediates step to convert it to propylene. 

BIO-PET Obtained by polyesterification of terephthalic acid with biobased ethylene glycol. PET is 
one of the widely used polyesters for one time packaging applications. 

BIO-PA PA is synthesized from diamines and dibasic acids. Polyamides are widely used as 
engineering thermoplastic in automotive, flexible electronics, packaging and electrical 
applications. 

PEF PEF is generally produced by polycondensation and polytransesterification of EG and 
FDCA, derivatives of dichloride-FDCA, dimethyl-FDCA, diethyl-FDCA, or bis-
(hydroxyethyl)-FDCA. It displays remarkably high gas barrier properties which enables 
its practical application in the food and beverage industry.  

PBAT Polybutyrate is a biodegradable and compostable biopolymer with similar properties like 
low density polyethylene (LDPE). PBAT bioplastics is made from fossil resources. Its 
compounds (starch, PLA) have a biobased carbon content of up to > 30%. Typical 
application is for the flexible film for packaging, e.g. compostable shopping bags. 
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As can be seen from the Table 1 bioplastics are widely applied, but still it is necessary to modify 

their properties combining additives, blends or by manufacturing composite materials made of 

them.  

1.2 PLA 

Polylactide (PLA) is thermoplastic aliphatic polyester and currently used in various areas such 

as biomedical applications, textiles, composite and food packaging. It can be easily spun into 

fibres and made into films. PLA is one of the most studied polymers of this family because it 

can be produced via fermentation of renewable resources, like sugar, beets or corn starch [11].  

Polylactide derived from renewable resources, e.g. corn, wood residues or other biomass, gain 

huge interest from scientific community because it could replace many fossil fuel derived 

polymers but also because of its potentially useful physical and mechanical characteristics. 

There have been numerous research studies on PLA manufacturing, from polymer processing 

and modification, to polymer characterization. Studies related to the formation of PLA co-

polymers, blends with other polymers or composite materials based on PLA have also been 

carried out [14-23].    

Manufacturers in Europe have been moving towards industrial-scale production of PLA. The 

biodegradability of PLA is also an advantage because of the growing global problems 

associated with plastic waste disposal. PLA represents a good candidate to produce 

biodegradable food packaging because of its good mechanical properties and its processability 

using most conventional techniques and equipment [5, 24].  

The chemistry of PLA involves the processing and polymerization of lactic acid monomer. 

Lactic acid HOCH3CHCOOH is a simple chiral molecule which exists as two enantiomers, L- 

and D-lactic acid (Figure 2), differing in their effect on polarized light [24]. 

 

 
Figure 2: Structure of poly(lactic acid) isomers (L-PLA, D-PLA, D,L-PLA) [25] 
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Polymerization of lactic acid to PLA can be achieved in three ways [26]: 

1. Direct condensation—which involves solvents under high vacuum, forms low 

molecular weight PLA 

2. Two steps polymerization i.e. solid state polymerization forms higher molecular weight 

PLA but is still limited by the equilibrium reaction of polycondensation due to 

hydrolysis of ester bonds  

3. Ring-opening polymerization induces formation of low molecular weight oligomer 

which is catalytically depolymerized to form cyclic dimer intermediate (lactide) which 

is solvent free. 

 

In direct condensation, solvent is used under high vacuum and temperatures for the removal of 

water produced in the condensation (Figure 3). This approach was used by Carothers and still 

used by Mitsui Chemicals. The resultant polymer is a low to intermediate molecular weight 

material, which can be used as is, or coupled with isocyantes, epoxides or peroxide to produce 

a range of molecular weights. In the solvent-free process, a cyclic intermediate dimer, 

commonly referred to as lactide, is produced and purified by distillation. Catalytic ring-opening 

polymerization of the lactide intermediate results in PLA with controlled molecular weight. By 

controlling residence time and temperatures in combination with catalyst type and 

concentration, it is possible to control the ratio and sequence of D- and L-lactic acid units in the 

final polymer [24]. 

  

 
Figure 3: Synthesis of polylactic acid [26] 
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PLA has several advantages: it is biocompatible and biodegradable, and can be readily broken 

down thermally by hydrolysis. It is available from renewable agricultural resources. This latter 

circumstance also helps to improve the farm economy. There is reduction in carbondioxide 

emissions in comparison with conventional petroleum based commodity plastics because it 

helps by fixation of significant quantities of carbondioxide. The most important ability of PLA 

is that one can tailor its physical properties by material modifications. The polymer is relatively 

hard, with the glass transition temperature in the range 50–70 °C and melting at 140–170 °C 

[27-31]. 

1.3 Biocomposite materials 

Considering EU legislations like Directive 1999/31/EC, 2008/98/EC, 2000/53/EC, 

2009/33/EC, and 2012/19/EU which are mainly about waste problem solving, research on 

composite materials have received increasing attention [32-35].  

Composite materials represent one of the main topics in science and technology of materials, 

due to their excellent physical, mechanical, chemical and thermal properties reflecting the best 

properties of its individual constituents [36, 37].  

 

Today’s challenge broght to scientists and engineers is to develop the technology needed to 

make biobased materials revolution a reality. The production of chemicals and materials from 

biobased resources is expected to be ~25% in 2030. Expectations are that two-thirds of the 

global chemical industry can eventually be based on renewable resources [37]. Nowadays, the 

term ‘’bio’’ is extremely important and great number of novel technologies want to incorporate 

it in their development strategies. One of such technologies is composite material technology 

which has found as niche in biocomposite production, especially in the fibre-reinforced 

composite market which is a multibillion-dollar business (Table 2). 
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Table 2: Production of biocomposites in the EU in 2012 and forecast 2020 (in tonnes) [38] 

Biocomposites 
Production  

in 2012 

Forecast production  
in 2020 

(without incentives for  
biobased products) 

Forecast production  
in 2020 

(with strong incentives for 
biobased products) 

World production of 
composites 

   

Construction,  
extrusion 

190.000 t 400.000 t 450.000 t 

Automotive,  
compression moulding & 
extrusion/thermoforming 

60.000 t 80.000 t 300.000 t 

Granulates,  
injection moulding 

15.000 t 100.000 t > 200.000 t 

Natural fibre composites (NFC)    

Automotive,  
compression moulding 

90.000 t 120.000 t 350.000 t 

Granulates,  
injection moulding 

2.000 t 10.000 t > 20.000 t 

 

ACCORDING TO MATRIX ACCORDING TO ADDITIVES 

 

 
 

 

 

Figure 4: Classification of composites according to matrix and additives [39] 

 

In accordance with the above-mentioned, research and development of composites that are 

biodegradable and which show structural and functional stability due to storage and use has 

began [37]. Biocomposites are composites that have natural reinforcements e.g. vegetable fibres 

in their composition and can be: partial biodegradable with non-biodegradable polymers 

matrices such as thermoplastic polymers (e.g., polypropylene, polyethylene) and thermoset 

polymers (e.g., epoxy, polyester) or they can be fully biodegradable with biodegradable 

polymers matrices such as renewable biopolymer matrices (e.g., soy plastic, starch plastic, 

cellulosic plastic) and petrobased biodegradable polymer matrices (e.g., aliphatic co-polyester, 
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polyesteramides). The fully biodegradable ones are 100% biobased materials and show 

biodegradability and/or compostability properties [6, 37, 40, 41].  

Biocomposites made from plant fibres and biopolymers are more environmentally friendly 

biocomposites and these are called ''green'' composites (Figure 5) [37, 42].  

 

 
Figure 5: Classification of natural composites or biocomposites [39] 

 

1.3.1 Natural fibre reinforcement 

Biopolymers reinforced with biofibres can produce new biocomposite that in many applications 

replace the composites reinforced with glass fibre and in most cases meet the requirements set 

by the above mentioned Directives of EU. Natural fibre reinforcements are capable to enhance 

composite overall properties like mechanical and flame retardant properties, fire resistance as 

well as water and gas barrier properties [40]. The most commonly used fibres for such 

applications are natural plant fibres presented in Figure 6 [43]. 

 

 

 

Figure 6: Classification of natural fibres [44] 
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The interest in the use of plant fibres as reinforcement agents in polymeric composites is 

growing currently, owing to environmental regulations and ecological concerns of global 

society. 

1.3.2 Bast fibres 

Bast fibres are well known as the most promising sustainable and highly commercial available 

fibres among all natural fibres for the usage as reinforcements in the polymer composite 

materials. They are abundantly available, fully and easily recyclable, non-toxic, biodegradable, 

non-abrasive to the molding machinery, easily colored and have lower cost, lower density and 

lower energy consumption in producing step with respect to synthetic fibres such as glass and 

carbon fibres [40]. In addition to having lower processing energy requirements they are shatter 

resistant when compared to synthetic fibres. Additionally, bast fibres have good sound 

abatement capability, non-brittle fracture on impact, high specific tensile modulus and tensile 

strength, low thermal expansion coefficient and low mold shrinkage.  

1.3.3 Chemical and structural composition 

All bast fibres are constituted by cellulose, hemicellulose and lignin combined to some extent 

as major constituents. In fact, the so-called lignocellulosic fibres have cellulose as the main 

fraction of the fibres. Cellulose is a linear homopolysaccharide composed of repeating 

cellobiose units which are joined via β-1,4 glycosidic linkage. Each cellobiose unit is comprised 

of anhydro-D-glucose subunits, rotated through 180° with successive β-D-glucopyranose units 

along the cellulose molecular chains with hydroxyl groups in unidirectional parallel orientation 

when in the structure of elementary fibrils (Figure 7) [45]. There is a large amount of hydroxyl 

groups in cellulose (three in each repeating unit) and these hydroxyls form hydrogen bonds 

inside the macromolecule itself and also with hydroxyl groups from the moist air thus imparts 

hydrophilic properties to the natural fibres. Their moisture content can reach up to 3–13%. 

Cellulose forms slender rodlike crystalline microfibrils that are embedded in a network of 

hemicellulose and lignin, i. e., the microfibrils are bonded together through an amorphous and 

complex lignin/hemicellulose matrix that acts as a cementing material.  
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Figure 7: Cellulose structure [45] 

 

Hemicellulose is a polysaccharide with lower molecular weight than cellulose and very 

hydrophilic (i.e., containing many sites to which water can readily bond). Hemicelluloses are 

composed of β-1,4-linked D-xylopyranoyl units with side chains of various lengths containing 

L-arabinose, D-glucuronic acid, or its 4-O-methyl ether, D-galactose, and D-glucose. The main 

difference between cellulose and hemicellulose is that hemicellulose has much shorter chains 

and also has branches with short lateral chains consisting of different sugars while cellulose is 

a linear macromolecule. Both are easily hydrolyzed by acids, but only hemicellulose is soluble 

in alkali solutions as well as lignin. Lignin is a three-dimensional hydrocarbon polymer with an 

amorphous structure and a high molecular weight, known as compound which gives rigidity to 

the plant. Its complex composition presents hydroxyl, methoxyl and carbonyl functional groups 

[40, 46-48]. 

 

Bast fibres are obtained from the outer cell layers of the stems of various plants. The main 

plants used for the supply of bast fibres are flax, jute, hemp, ramie and kenaf. Regarding the 

fact that each climatic zone could have its own fibrous crop, the representative of the 

Mediterranean would surely be Spartium junceum L. whose fibres were well known through 

the history.  Like other bast fibres, SJL fibres are comprised of a bundle of tube-like cell walls. 

Each cell wall contains primary, secondary S1, S2 and S3 layers. The fibres can be much longer 

than wood fibres with lengths of 20 mm for hemp for example. These types of fibres have a 

lower lignin content than wood fibres; consequently, the cellulose content is higher. The 

cellulose in bast fibres also tends to be more crystalline (80–90%) than that of wood fibres (50–

70%) [49]. 
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1.3.4 Fibre extraction 

The great challenge in producing composites containing bast fibres with controlled features 

depends on the great variation in properties and characteristics of fibres. The quality of the 

natural fibres is largely determined by the efficiency of the treatment process and can 

dramatically influence the properties of the final composites. The overall fibre extraction 

process, applied to bast fibres, is called retting and consists of the separation of fibre bundles 

from the cuticularized epidermis and the woody core cells. The role of retting in obtaining high-

quality standardized fibres is crucial and research and development are heading toward the 

industrialization of treatment processes [50]. Retting process is also known as maceration or 

degumming. The most commonly used extraction methods i.e., water retting and dew retting 

are based on the microbiological retting. Other methods involve mechanical, physical, 

chemical, and enzymatic extraction. Enzymatic retting is very promising but not yet practiced 

on an industrial scale [50-54].  

Microbiological retting  

Microbiological retting is a traditional and highly widespread retting method. Two different 

types of microbiological retting are mainly adopted: dew and water retting. Both of them are 

carried out by pectin enzymes secreted by indigenous microflora.  

Dew retting  

In dew retting, also called field retting, harvested plants are thinly spread out for 2–10 weeks 

in fields. During this period, microorganisms, mainly filamentous fungi or aerobic bacteria 

present in soil and on plants, attack noncellulosic cell types, removing pectins, and 

hemicelluloses from parenchyma cells and the middle lamellae, without attacking cellulose 

fibres. In this process, the colonizing fungi possess a high level of pectinase activity and the 

capacity to penetrate the cuticular surface of the stem: thus, fibre bundles come out separated 

into smaller bundles and individual fibres. Currently, dew retting is the most used process for 

the industrial production of bast fibres, mainly flax and jute, because of its low cost. Moreover, 

often low and inconsistent fibre quality is produced as compared to other methods, such as 

water retting. Risks of under retting and over retting are also reported: they may cause 

difficulties in separation or weaken the fibre.  
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Water retting  

In water retting, straws are soaked in freshwater, today in large tanks, while in the past rivers 

or ponds, even the sea water were used. During this treatment, which last for 7–14 days on most 

bast fibre crop straws, water penetrates into the central stalk portion, by breaking the outermost 

layer, and thus provoking an increased absorption of moisture and the development of a 

pectinolytical bacterial community. The duration of the treatment depends on the water type, 

temperature and on bacterial inoculum. The first stage of the process consists of the aerobic 

microorganisms growing, which consume most of the dissolved oxygen, ultimately creating an 

environment favorable for the growth of anaerobs. Water retting generally produces fibres with 

a higher quality than those produced by dew retting, but the water retting process impacts the 

environment due to the consumption and contamination of large amounts of water and energy. 

With freshwater resources becoming increasingly scarce, an alternative or improvement in 

water retting will have to be foremost in dealing with water scarcity and pollution reduction. 

Artificial water retting, employing warm water and bacterial inoculum, has also been used to 

produce homogeneous and clean high-quality fibres in 3–5 days [50]. 

Enzymatic retting  

A modification of water retting is the enzymatic treatment, also called bioscouring, where 

degrading enzymes are directly added to tank water or in a bioreactor. This method could be a 

promising replacement for traditional retting methods in terms of time-saving, ecology 

friendliness and convenient characteristics. The duration of enzymatic retting ranges from 8 to 

24 h. Pectinases are the main enzymes employed for retting, in order to free the fibres from 

other tissues. Pectinolytic enzymes are a heterogeneous group of related enzymes that hydrolize 

the pectic substances, mostly present in plants. They are widely distributed in higher plants and 

microorganisms, since they help in cell wall extention and in softening some plant tissues 

during maturation and storage. They also help to maintain ecological balance by causing 

decomposition and recycling of waste plant materials. Enzyme retting via the pectinases is 

capable of producing consistent high strength renewable fibres with variable fineness values 

for use in novel resins. For each enzyme, specific conditions are identified for employment in 

retting, since the activity can change dramatically with pH, temperature and enzyme 

concentration. Moreover, chelators and surfactants are usually employed in formulations to 

improve activity. Foulk et al. reported that, with a specific knowledge of the composition of the 

enzyme mixture, enzyme retting could be used to tailor fibres/fibre bundles with particular 
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properties, such as strength and fineness, and for specific applications. Strength, which is a 

major concern in many applications, is preserved by retting with relatively pure pectinase, either 

pectate lyase, or polygalacturonase. However, a mixed enzyme preparation containing cellulase 

could be used for advantageous applications where the fibres will be shortened, such as for 

paper/pulp or injection molding. In fact, it has been found that enzyme formulations like 

Viscozyme, containing cellulase as a component, can weaken the bast fibres, since the nodes 

of the fibres are particularly sensitive to the attack by this enzyme [55]. The final application, 

therefore determines the retting formulation. 

Mechanical extraction   

The mechanical extraction of fibres consists of various steps:  

 a first separation is carried out by breaking, that is the stalks are passed between fluted 

rollers to crush and break the woody core (shive) into short pieces (hurds);  

 the remaining fibres and hurds are subjected to scutching (traditionally performed with 

boards and hammers), by which the fibre bundles are gripped between rubber belts or 

chains and carried past revolving drums with projecting bars that beat the fibre bundles, 

separating the hurds, and broken short fibres (tow) from the remaining long fibres. 

 finally, in the hackling (realized in the past by pulling the fibres through a set of pins) 

thick fibres are divided by passing the long fibres through a series of combs of 

increasing fineness to clean and align the long fibres and separate the remaining tow 

and debris.  

Interestingly, the modern mills maintain the integrity of the long fibres, by disentangling and 

aligning the fibres, without destroying length. Another process currently used to mechanically 

separate the fibres is called decortication and can be performed by hammermilling or 

rollermilling. In the first case, single or multiple concurrent drums rotating with hammers 

projecting transversely from the drum surface beat the straw until the separated hurd/shive and 

fibre particles can pass freely through some meshes placed inside the machine. In the second 

case, long cylindrical corrugated rollers are assembled in such orientations as to crack the straw 

stalks while producing minimal damage to the fibre. The two processes differ in the pro and 

con: if the hammermilling is characterized by higher throughput capability, the rollermilling 

gives much greater length control, producing even very long fibres and will better preserve the 

integrity of the fibres, without damages or entanglements. The choice of the preferable 
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mechanical extraction depends on the type of the fibre, its final application, type of ensuing 

treatments.  

Physical extraction 

Among the physical treatments of fibres, the processes using electromagnetic radiation, 

microwave radiation, high temperature, and/or pressure can be considered. Steam explosion is 

an autohydrolysis process involving the use of saturated steam at high pressure followed by a 

sudden decompression, which causes the substantial breakdown of the lignocellulosic structure, 

the hydrolysis of the hemicellulose fraction, the depolymerization of the lignin components, 

and the defibrillation. High decompression rates lead to improved fibre freeness but shorter 

fibre length. During the process, high temperature softens the material and mechanical action 

during the high-pressure discharge results in fibre separation: the partially depolymerized lignin 

becomes more or less soluble in various organic solvents, such as alcohols, acetone and alkaline 

solutions, whereas the cellulose, much more resistant to hydrolysis than pectinic and 

hemicellulosic polysaccharides, retains its structure. The steam explosion treatment is a fast and 

well-controlled process, with a low cost and very flexible treatment parameters. It is well 

adapted for the processing of various fibres, including those not previously retted. It can be 

carried out downstream, after alkali treatments, bleaching, and sometimes acid hydrolysis in 

order to completely degrade the hemicellulose and lignin fractions. Usually, steam explosion is 

combined with an alkaline pre-soaking to favor the cleavage of lignin-hemicelluloses bonds. 

The reaction results in the increased solubility of the lignin alkaline solvent and in an enhanced 

water solubilization of hemicellulose.  

 

Recently, a Polish group [56, 57] has developed a new osmotic degumming of flax fibres. The 

degumming mechanism is based on the diffusive penetration of water inside the stem, where 

the long bundles of cellulosic fibres are clustered in slivers with polysaccharides, mostly 

pectins. The pectins, which are highly absorbent, increase their volume several times, which 

results in a considerable increase of hydrostatic pressure inside the stem and leads to pressing 

the epidermis. As the peripheral tension is stronger than the longitudinal one, cracks of the 

epidermis occur lengthwise, without breaking and shortening the fibres. Since the pectins 

become diluted and solved (together with other bast substances) in water, the technological 

liquid is subjected to proper filtration, which also serves to recover pectins for further use in the 

cosmetic industry. This osmotic method produces fibres characterized by good tenacity, 
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divisibility, and soft touch. It is equally as efficient as the warm water retting method and could 

be applied to other bast fibres by simply changing the degumming parameters (temperature, 

flow velocity, and process duration). To specifically modify the surface of fibres in order to 

improve their compatibility with polymeric matrix, the plasma treatment is an effective physical 

method, which can be performed at both atmospheric and high pressure under the flow of 

different types of gas (usually oxygen or argon). Depending on the material to be treated, 

plasma flow can cause ablation, cross-linking or surface activation. Ablation consists in the 

removal of organic residues as well as surface layers at a molecular level. Cross-linking occurs 

as a result of the interaction between two or more radicals leading to the formation of covalent 

links while surface activation increases the surface energy as a result of the generation of polar 

groups on the reinforcement surface. Exposure times, pressures, and discharge power are the 

variables that must be carefully considered to achieve the best results in terms of the surface 

modification. This kind of treatment is widely used for common natural fibres as flax, cane, 

coir, and bamboo because, unlike chemical treatments, it is a simple nonpolluting process that 

can be considered as dry and clean.  

 

Microwave treatment is another phsical treatment for fibre extraction. Microwaves are 

electromagnetic waves that lie between radio and infrared frequency regions in the 

elctromagnetic spectrum. Such energy can be used to extract the fibres from the plant by 

combining thermal and non-thermal effect. Thermal effect was developed when dipole 

molecules inside the stem try to rotate forcefully in order to orient in the direction of applied 

electric field thus provide dielectric heating that can be explained by Maxwell's equation. The 

dielectric property of material influences the conversion of electromagnetic to thermal energy 

which in turn helps to seperate natural fibres that are bounded together among themselves and 

to the bark by powerful pectin bonds. The dielectric property of a material is described by the 

complex relative permittivity (ε*) in (1).  

 ε* = ε'-j ε'' (1) 

where: j=√-1, ε' is real part – dielectric constant that reflect the ability of the material to store 

electric energy when in an electromagnetic field, ε'' is imaginary part – dielectric loss factor 

that influence the conversion of electromagnetic energy into thermal energy [58-60]. 

Non-thermal effect was explained by applying Plack's law – at frequency of a commercial 

microwave oven the energy carried by microwave photons is approx 1 J/mol while energy 

needed to break a C-H bond of pectin chain in material is about 413 KJ/mol, but volumetric 

heating occurs because of conversion of electromagnetic energy to mechanical and heat energy 
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due to dipole rotation and thus effects the bond breakage [58-62]. The physical treatments are 

surely not yet completely developed and only few papers describe their use. However, they are 

characterized by high quickness, easy scalability, and process flexibility, that make this kind of 

extraction noteworthy of further investigation. 

Chemical extraction  

With respect to water retting or dew retting, chemical processes are sometimes preferable since 

they produce fibres characterized by high-constant quality, regardless of weather conditions, 

usually in shorter times. Numerous chemical treatments can be performed on the fibres 

depending on their type, the ensuing retting process to be applied, their final applications. The 

most used chemical process is alkalization, a treatment aimed at removing hemicelluloses: it is 

usually carried out with sodium hydroxide, added as an aqueous solution at a variable 

concentration in the range 1–25% by weight. Alkali treatment seems to increase the elongation 

at break and the surface roughness while improving the ultimate tensile strength, the initial 

modulus, the electrical properties, and the thermal stability, at the same time it decreases the 

fibre tensile strength with increasing NaOH concentration, demonstrating that the alkalization 

could induce damages on fibre. To completely remove the lignins and most hemicelluloses, 

aqueous ammonia treatments are an interesting alternative to alkali retting. Certainly, chemical 

treatments are an effective alternative to microbial dew retting which suffers from climatic risks 

leading to substantial harvest losses. Indeed, chemical retting is not affected by weather 

variability and can retain the fibre quality. However, difficulties in waste-management and the 

moderate risk to degrade the fibres currently make such treatments less attractive than in the 

past. 

1.3.5 Fibre modification 

Despite all the positive properties of natural fibres already mentioned above, plant fibres have 

nonuniformity such as in dimensions as in mechanical properties when compared to synthetic 

fibers. Other drawbacks for the use of plant fibres in biocomposites are: the lower processing 

temperature (limited to approx. 200°C) due to fibre degradation and/or volatile emissions, the 

high moisture absorption due to fibre hydrophilic nature and incompatibility with most 

hydrophobic polymers. These problems are well known and countless research has been 

developed to reduce them with reasonable success [40]. 
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Because of the low interfacial properties between plant fibre and polymer matrix which often 

reduce their potential as reinforcing agents due to fibre hydrophilic nature, chemical 

modifications are considered to optimize the interface of fibres. Chemicals may activate 

hydroxyl groups or introduce new moieties that can effectively interlock with the matrix. The 

most common modification treatments are: alkaline, acetylation, benzoylation, peroxide, 

isocyanate, silane, grafting, coupling agents and nanoparticle treatments [40, 63-69]. 

Alkaline treatment 

Alkaline treatment or mercerization is one of the most used chemical treatments of natural fibre. 

As a result, the hydrophilic (OH) groups are reduced and the surface roughness of the fibre is 

increased. This treatment removes a certain amount of lignin, wax and oils covering the external 

surface of the fibre cell wall, depolymerizes cellulose and exposes the short length crystallites 

(2). As a result more cellulose molecules are exposed, which improves adhesion between the 

fibre and matrix. The efficiency of the alkali treatment depends on the type and concentration 

of the alkaline solution as well as time and temperature of the treatment. Alkali treatment 

changes the fine structure of native cellulose I to cellulose II.  

 

 Cell–OH + NaOH → Cell–O–Na + + H2O + [surface impurities] (2) 

 

Therefore, when the alkaline treated plant fibre is used to reinforce polar polymer composites, 

in comparison with the composite filled with untreated plant fibre, the enhanced surface 

roughness and increased reactive sites exposed on the surface would lead to a better mechanical 

interlocking and adhesion with the matrix, both of which are in charge of the interfacial strength 

of the composite [40, 63-66]. 

Nanoparticle treatment 

Nanoparticle treatment of natural fibres is a new way to improve the properties of polymer 

composites. The most used techniques for nanoparticle impragnation are pad-dry-cure method 

or impregnation process, layer-by-layer (LbL) assembly, plasma treatment, wet chemical 

etching, hydrothermal treatment, vapor deposition, sol-gel method, application of a synthetic 

binder or by electroless deposition. Chemical or mechanical binding of nanoparticles to the 

surface of fibres is done with the aim of improving compatibility between fibres and polymer 

[70, 71]. 
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Recently, the incorporation of nanoparticles in the finishing fabrics as flame retardant seems to 

be a valid and interesting approach. The main advantage is that a low amount of them can be 

employed, although not all the nanoparticles available in the market can be used in the flame 

retardancy field. It has been corroborated that several key points have to be into consideration 

in order to obtain better results. Among them shape and size of the nanoparticles are directly 

related to the treatment conditions, chemical nature, concentration, as well as their distribution 

as a function of the employed method of treatment [71]. Wetting behavior of a solid surface is 

controlled by geometric structure as well as chemical composition of the material. Generally, 

for the conversion of a hydrophilic surface into a superhydrophobic surface, two key parameters 

are essential: creation of hierarchical surface structures (micro/nano-scale roughness) and low 

surface energy layer. In such surfaces, microscopic air pockets are trapped beneath the water 

drops leading to a reduced contact area between the surface and liquid drops and help to create 

a composite interface which leads to enhanced properties [72] . 

Fibres are usually modified with the following nanopartcles: TiO2, ZnO, Ag, Au, SiO2, Al2O3 

[73, 74]. They can exist as nanorods, nanoflowers, nanodiscs, nanospheres, etc. Their 

geometrical characteristics may affect the properties of the treated fibre [75, 76]. 

 

Expansion of nanotechnology in recent years has influenced the scientific, technical and 

economical competitiveness of renewable resource-based polymers in developing a range of 

high performance engineering and consumer products. Recently, researchers are investigating 

the use of nanostructures (cellulose nanostructures, carbon nanotubes, nanoclays etc.) as 

reinforcements in order to produce a new class of nanobiocomposites. The inherent properties 

of such nanoparticles are enhancing the thermal, mechanical, dimensional stability and other 

properties of the composite materials (biodegradability, fire retardancy, etc.) with the added 

advantages of ecological improvement were effectively utilized to create a new class of 

materials. Additional advantages like ease to process, low density and recyclability were also 

provided [77-79].   

1.4 Nanobiocomposite materials 

New type of composite called nanobiocomposites has emerged and open an opportunity for the 

use of new, high performance, light weight green nanocomposite materials making them as 

replacement of conventional non-biodegradable petroleum-based plastic materials [80].  

Scientists learn to select suitable matrices (e.g. aliphatic polyesters, polypeptides and proteins, 



Zorana Kovačević: Development of Advanced Polylactide Nanobiocomposite Reinforced with Spartium junceum L. fibres 

18 
 

polysaccharides, and polynucleic acids) and reinforcing fillers of nanometer scale dimensions 

(e.g. nanotubes, nanofibres, clay nanoparticles, hydroxyapetite and metal nanoparticles, 

nanocellulose crystals, etc.) and alter their chemistry and structure to suit the target field. Such 

composite materials are known as nanobiocomposites which are obtained from 100 % biobased 

material, in which the fillers and the matrix both are obtained from renewable resources [81]. 

The properties inherent to the biopolymers, that is, biocompatibility and biodegradability, open 

new prospects for these hybrid materials with special incidence in environmentally friendly 

materials (green nanocomposites) including food packaging materials and materials used in 

biomedical fields including drug-delivery, biosensors, cancer diagnosis, and tissue engineering 

[82]. Research on nanobiocomposites can be regarded as a new interdisciplinary field closely 

related to significant topics such as automotive industry or construction engineering. The 

upcoming development of novel nanobiocomposites introducing multifunctionality represents 

a promising research topic in which the application of nanotechnology to biodegradable 

polymers may open new possibilities for improving not only the properties but also the same 

time the cost-price-efficiency. Owing to the nanometer-size particles, these nanocomposites can 

exhibit markedly improved mechanical, thermal, barrier and physico-chemical properties, when 

compared with the starting polymers and conventional (microscale) composites. [83, 84]. 

Most commonly used nanofillers are cellulose based nanofillers, carbon nanotubes and 

nanoclays. 

1.4.1 Nanoclay 

These layered silicates are most commonly used nanofillers in the synthesis of nanocomposites 

due to their availability, versatility and respectability towards the environment and health [85]. 

Most clays are 2:1 smectite layered silicates, meaning that there are 2 SiO4 tetrahedral layers 

sandwiching 1 MO6 octahedral layer, where M is most commonly aluminium or magnesium 

[86] (Table 3). These layers are approx. 1 nm thick and their tangential dimensions range from 

300 Ǻ to a few microns. The variation in the dimensions depends on clay source. The layers 

also have a very high aspect ratio (length/thickness) and surface area. The Van der Waals gap 

between these layers (gallery spacing or interlayer) is due to the regular stacking of the layers. 

The negative charge, generated by isomorphic substitution of Al3+ with Mg2+ within the layers, 

is counterbalanced by the presence of hydrated alkaline cations, such as Na or Ca, in the 

interlayer. Since the forces between layers are weak, it is possible to intercalate small organic 

molecules between the layers [87, 88].  
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Table 3: Nanoclays identification [91] 

Family Group Formula 

Phyllosilicates TO 
(1:1) 

Kaolinite The reference plate is formed from a tetrahedral 
plate T and a octahedral plate O. The thickness 
of the layer is about 0.7 nm. 
 
Kaolinite (Al4Si4O10(OH)8) 
 

TOT 
(2:1) 

Smectite 
(Talc, Mica, 

Montmorillonite), 
Sepiolite 

Two tetrahedral plates T in both sides of an 
octahedral plate O form the reference plate. The 
thickness of the layer is about 1 nm. The group 
includes many minerals that are major 
constituents of clays. 
 
Montmorillonite (Na0.33Al2Si4O10(OH)2xnH2O) 
 

TOT:O 
(2:1:1) 

Chlorite, Bentonite, 
Saponite 

The reference plate is formed of 3 plates TOT 
and another isolated O plate. The thickness of 
the layer is about 1.4 nm. 
 
Chlorite di-tri (Al2Mg3Si4O10(OH)8) 
 

Polysilicate Natural Kenyaite, Magadiite, 
Kanemite, Ilerite, 
Silhydrite, Zeolite 

Magadiite (Na2Si14O29x7H2O) 

Synthetic FluoroHectorite, 
Zeolite 

Zeolite (Na2Al2Si3O10x2H2O) 

Double lamellar 
hydroxide 

Synthetic Hydrotalcite Hydrotalcites (Mg6Al2(OH)16)(CO3
2)x4H2O) 

 

Clays provide the characteristic property called cation exchange capacity (CEC). This capacity 

of cations is described as the quantity of positively charged ions held by the negatively charged 

surface of clay minerals. In general, most of the clay minerals tend to have a negative charge 

resulting from the substitution of silica cation by aluminium cation in the clay-sheet structure. 

This phenomenon (isomorpous substitution) produces the capacity in clay sheets to hold 

positive charges [89]. The end properties of nanocomposites are influenced by the dispersibility 

of silicates into their individual layers in the matrix. The dispersibility of layered silicates into 

individual layers is governed by its own ability for surface modification via ion exchange 

reactions that can replace interlayer inorganic ions with organic cations. The silicate layers can 

be miscible only with hydrophilic polymers but can be made miscible with hydrophobic 

polymers by introducing /exchanging interlayer cations galleries (Na+, Ca2+, etc.) of layered 

silicates with organic compounds. Therefore, the organic modification improves both 

compatibilization between hydrophilic clay and hydrophobic polymer matrix and also increases 

interlayer spacing [79]. Moreover, organic cations can be used as silicate attached initiators or 
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mediators for polymerization, thus providing a mechanism for improving interfacial adhesion 

between matrix and the silicate and a route for effective stress transfer [79, 90]. 

One of the most common applications of nanoclays is their usage as flame retardant (FR) in 

order to reduce the flammability of the end-use products.  

The existence of cellulose fibres in biobased polymers lead to high flammability of such 

composite material. Generally, polymers decompose at 300–500 °C in gas and condensed 

phases, producing combustible gases, liquids, char and smoke with dripping that could be 

hazardous. The significant release of heat and smoke may also contribute to the fire spread and 

poor visibility, respectively, thereby causing serious risks to humans and huge loss of property. 

Furthermore, softening and creep behaviour of fibre reinforcement and polymer matrix under 

heating can result in buckling and failure of load-bearing composite structures, leading to the 

loss of structural integrity. Therefore, the vulnerability of composites to fire is a vital issue in 

determining their acceptance by the stringent standards in public transportation and 

infrastructural applications. Flame retardant treatments are crucial to overcome the burning 

deficiency and extend the applicability of natural fibre reinforced composites. Some studies 

have claimed that the incorporation of flame retardant (FR) or flame retarded fibres can 

effectively prohibit the burning process (heating, decomposition, ignition, combustion and 

flame propagation) of natural fibre composites [92]. 

Therefore, the major interest in the plastics and textiles industries is not the fact that their 

products burn but how to render them less likely to ignite and, if they are ignited, to burn much 

less efficiently. Flame retardants act to break this cycle, and thus extinguish the flame or reduce 

the burning rate by reducing the heat evolved to below that required to sustain combustion and 

by developing inherently flame retarded polymer systems or  in a number of other possible 

ways. 

Following approaches are mostly used in the FR treatments of textile fibres: 

1. Usage of inherently flame retarded agents comprising the so-called high-performance 

fibres 

2. Chemical modification of existing textile material 

3. Incorporation of flame retardants into fibre structure 

4. Making of specific surface treatment 

 
Nanoclays are the most widely utilized nanoparticles, for their low cost, and overall 

improvement of mechanical, thermal, electrical and optical properties compared with their 

macro- and micro- counterparts. The research on nanoclay nanocomposites produced thousands 
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of papers and articles in the last decade and nanoclay have now a variety of commercial 

applications. The automotive industry was the first one to employ nanoclay in a vast scale, with 

the production of the step assist for the 2002 GMC Safari and the Chevrolet Astro van, the body 

side molding of the 2004 Chevrolet Impala, and the cargo bed for the 2005 Hummer H2 SUT. 

However, nanoclay-hybrids were first developed by Toyota Inc. research laboratories and their 

development has motivated a number of studies today. 

One of the most common applications of biocomposites made from bast fibres such as flax, 

hemp or Spartium junceum L. is in the automotive industry, specifically in the development of 

car interiors (carpets, trim on the inside door, cover for the spare wheel, airbag, etc.) [93, 94]. 

The increasing use of biocomposites in the normal human life provides a better and healthier 

life of every individual, and the steady progress of our eco-system, especially if measures have 

been taken considering its biodegradation at the end of life of such product.  

1.5 Biodegradation 

According to the European Bioplastics Organization (EBO), bioplastics are defined as “Plastics 

based on renewable resources (biobased) or plastics which are biodegradable and/or 

compostable”. Biodegradation is the chemical breakdown of materials by a physiological 

environment. The term is often used in relation to ecology, waste management, and 

environmental remediation. Biodegradable polymers may be defined as those that undergo 

microbially induced chain scission, leading to mineralization, photodegradation, oxidation, and 

hydrolysis, which can alter a polymer during the degradation process. Biodegradable polymers 

(those derived from plant sources) begin their lifecycle as renewable resources, usually in the 

form of starch or cellulose [95].  

Further, for a polymer to be categorized as bioplastic, the following four criteria must be 

fulfilled: 

1. Chemical characteristics: At least 50 % of its final composition should be necessarily 

organic matter.  

2. Biodegradation: The developed polymer should degrade by a minimum of 90 % of its 

weight/volume within 6 months under stimulated composting conditions. 

3. Ecotoxicity: Undegradable residuals of biopolymer after biodegradation for 6 months, 

should not be a potential threat to the growth of plants.  
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4. Disintegration: The biobased polymer should, at least within a timeframe of  12 weeks, 

fragment microscopic undetectable components (< 2 mm) under controlled composting 

conditions [96]. 

1.5.1 Biodegradation mechanism 

For most biodegradable plastics, biodegradation is a single step process, requiring only 

biological activity, while some of them show two-step degradation profile where heat is 

responsible for initiating the degradation process.  

Biodegradation can take place under oxygen conditions – aerobic biodegradation (3) or within 

conditions where oxygen isn't available – anaerobic biodegradation (4). 

During aerobic biodegradation organic matter is oxidized leading to conversion of carbon (C) 

to carbon dioxide (CO2). Oxygen (O2) is consumed through which carbon of the sample is 

converted into carbon dioxide and water. Some carbon can remain as residual sample or in 

metabolites, representing the total residual carbon. Some carbon is used to produce new 

biomass. 

 

 Csample + O2 → CO2 + H2O + Cresidual + Cbiomass (3) 

  

In anaerobic biodegradation, no oxygen is consumed. The sample is converted into methane 

(CH4) and CO2, residual sample or metabolites and biomass. Anaerobic conditions are created 

when oxygen is not present or when oxygen is consumed or depleted more rapidly than it is 

replaced (mostly by diffusion) [95, 96].  

 

 Csample → CH4 + CO2 + Cresidual + Cbiomass (4) 

 

The primary indicator of biodegradation is CO2/CH4 production or O2 consumption, while other 

parameters like visual disappearance, weight loss, decrease in molecular weight, etc. present 

the secondary effects which demonstrate incomplete biodegradation. 

Rate and degreee of biodegradation are determined by various factors which can differ from 

one environment to another. These factors are moisture content, oxygen availability, 

temperature, type of used microbiology (bacteria, fungi, enzymes), density of microbiology, 

salt concentration [97].  
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1.5.2 Enzymatic degradation 

Enzymes are named and numbered (ECe number) according to rules adopted by the Enzyme 

Commission of the International Union of a Pure and Applied Chemistry (IUPAC). The first 

number informs on the class of enzymes catalyzing a given chemical reaction [82]:  

1. Oxidoreductases  

2. Transferases  

3. Hydrolases 

4. Lyases  

5. Isomerases 

6. Ligases  

Enzymes are catalytic proteins that decrease the level of activation energy of molecules 

favouring chemical reactions. Some of the most commonly used hydrolases cellulose, starch 

and cutin degradation are cellulases, amylases and cutinases. Lypases and esterases attack 

specifically carboxylic linkages while endo-peptidese is characteristic for amide linkages 

cleavage.  Enzymes like endo-peptidase or endo-esterases conduct their catalytic action along 

the polymer chain but the highest activity is provided at the chain edges.  

First, the digestible macromolecules join to form a chain, experiencing a direct enzymatic 

scission followed by the metabolism of split portions, which leads to the formation of a 

progressive enzymatic dissimilation of the macromolecule from the chain ends. Oxidative 

cleavage of the macromolecules may occur instead, leading to the formation of metabolization 

of the fragments, and thereby the chain fragments become short enough to be converted by 

microorganisms to H2O and CO2 [95]. 

A very common feature of hydrolases (e.g. depolymerases) is a reaction mechanism that uses 

three amino-acids residues: aspartate, histidine and serine. Aspartate interacts with the histidine 

ring to form a hydrogen bond. The ring of histidine is thus oriented to interact with serine. 

Histidine acts as a base, deprotonating the serine to generate a very nucleophilic alkoxide group 

(–O). Actually, it is this group that attacks the ester bond (the alkoxide group is a stronger 

nucleophile than an alcohol group) leading to the formation of an alcohol end group and an 

acyl-enzyme complex. Subsequently, water attacks the acylenzyme bond to produce a carboxyl 

end group and the free enzyme. This arrangement of serine, histidine and aspartate is termed as 

catalytic triad [97]. 
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1.6 Bioenergy 

The Sustainable Development Goals (SDGs), adopted by the United Nations General Assembly 

(UNGA) in 2015, provide a powerful framework for international cooperation to achieve a 

sustainable future of the planet. The 17 SDGs and their 169 targets, at the heart of “Agenda 

2030“, define a path to end extreme poverty, fight inequality and injustice, and protect the 

planets environment. Sustainable energy is central to the success of Agenda 2030. The global 

goal on energy - SDG 7 - encompasses three key targets: ensure affordable, reliable and 

universal access to modern energy services; increase substantially the share of renewable 

energy in the global energy mix; and double the global rate of improvement in energy 

efficiency. The different targets of the SDG 7 contribute to the achievement of other SDG goals 

and recently this has been the focus of an increasing number of studies. 

A number of alternative combinations of resources, technologies and policies are found capable 

of attaining these objectives [98].  

At present, less than 10% of the chemicals and raw materials offered by the chemical industry 

are generated from biomass. At the European level, it was proposed that 20% of the overall 

energy consumption by 2020 should be covered by renewable energy sources and that 10% of 

the road transport should run on biofuels [99]. 

Having in mind that in 2030, 90% of energy consumption will be based on fossil resources, the 

use of biomass for energy can be one way to reduce the everincreasing emissions of carbon 

dioxide, one of the main gases responsible for global warming and climate changing. 

Biomass, a renewable energy source, is biological material derived from living, or recently 

living organisms, such as wood and herbaceous material. Biomass has a great potential to 

provide heat and power to industry and to provide feedstocks to make a wide range of chemicals 

and materials or bioproducts. The chemical composition of biomass depends strongly on its 

source. Generally, biomass consists of 38% - 50% cellulose, 23 % - 32 % hemicelluloses and 

15 % - 25 % lignin.  
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Biomass for energy uses and chemical production presents the following important advantages: 

• It is mainly an indigenous source and therefore reduces dependency on energy imports and 

increase security supply; 

• Like other renewables, it has an enormous potential for job creation predominantly in 

agriculture, forestry and small- and medium-sized enterprises; 

• Technologies for renewable energy of European industry carriers offer promising business 

opportunities, because world energy consumption is expected to grow; 

• In many industries biomass is a by-product of industrial processes, so its utilization solves 

both a waste and energy problems. 

 

Bioenergy is produced in liquid, solid, or gaseous forms when biomass is treated, using different 

physical, biochemical, thermochemical and other processes. 

Biomass crops (switchgrass, miscanthus), agricultural crop residues, forestry and a wide range 

of organic materials can be combusted directly or densified into chips, cubes, briquettes, pucks 

and pellets, for direct combustion to produce heat and power. In general, biomass pellets are 

used for residential buildings, commercial buildings or greenhouse heating. Because of 

fluctuations in natural gas and oil prices, some growers in the greenhouse industry are looking 

for alternative energy sources such as biomass combustion systems as a way of reducing energy 

costs. Biomass combustion generates heat and produces carbon dioxide, which is being 

explored for use in the greenhouse to enhance plant growth [100]. 

The classification of solid biofuels is based on the origin and source. The solid fuels are divided 

by the following sub-categories [101]: 

1. Woody biomass (trees, bushes, and shrubs) 

2. Herbaceous biomass (plants that have non-woody stem and which die back at the end 

of the growing season) 

3. Fruit biomass (from parts of a plant which hold the seeds) 

4. Blends and mixtures. 
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2 HYPOTHESES CONFIRMATION 

H1. Spartium junceum L. fibres and PLA are biodegradable 

Hypotheses H1 is confirmed. Natural bast fibres have been chosen due to its biodegradability 

and it was neccesary to test biodegradability of PLA component so as the final composite. PLA 

sample showed weight loss of 1.4 %, while the most successful treated sample C3 revealed 2.5 

% weight loss during 5 days enzymatic treatment.  

 

H2. Modification of fibres with nanoparticles is achieved for the improved properties of the 

material  

Hypotheses H2 is confirmed. SJL fibres were treated with nanoparticles in two treatments (2F 

and 3F). Treatment with MMT/CA (3F) improved the strength of C3 material up to 135 % in 

comparison to C2 composite material. 

 

H3. Newly synthesized environmentally friendly nanoparticles are implemented in the 

product which is biodegradable 

Hypotheses H3 is confirmed. Nanoparticles were synthesized by laser ablation method at 

Institute of Physics using Si plate. Si is chosen due to its lower environmental impact. 

 

H4. Maceration of fibres using microwaves is developed for the shortening of production 

time and speed-up of time-to-market 

Hypotheses H4 is confirmed. Conventional retting in water requires 20 days of treatment. Novel 

OD treatment requires 28 days. Developed MW treatment lasts only 10 min which presents 

significant energy savings.  

 

H5. Utilization of the entire stem of the plant is realized, as well as obtaining biofuels as 

the end product  

Hypotheses H5 is confirmed. Entire stem was used in a way that 10 % was used for fibres 

production while 90 % was used for biomass. Biomass quality was tested to distinguish possible 

usage for solid or liquid biofuels. Results showed moisture content below 10 %, ash content 

below 5%, volatile matter of 75 % and higher heating value of 18 MJ/kg which are parameters 

that indicate high quality biomass that can be used in solid biofuel production.   
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3 MATERIALS AND METHODS 

3.1 Materials 

SJL fibres were obtained from SJL plant, harvested from the area around town Šibenik, Croatia 

(Figure 8). PLA Ingeo 6201D was purchased from Nature Works LLC, USA with following 

physical properties: specific gravity is 1.24, relative viscosity is 3.1, melt index is 15-30 g/10 

min and melt density is 1.08 g/cm3. NaOH pellets (purity ≥ 97 %), nanoclay modified with 25-

30 wt.% octadecylamine, citric acid, sodium hypophosphite hydrate (NaH2PO2) use for this 

study were obtained from Sigma-Aldrich Inc., UK. The Fluka buffer solutions were used for 

setting of pH 9.0 (borax/hydrochloric acid). Enzyme Savinase 16 L was obtained from Strem 

Chemicals, Inc. It is in liquid form with optimum conditions being 30 - 70 °C, pH 8 - 10 and activity 

of 16 Kilo Novo Protease Unit KNPU (S/g). 

 

 
Figure 8: SJL harvesting locations 
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3.2 Fibre extraction 

3.2.1 Water retting 

SJL samples were placed in a tank with water heated to a temperature of 30.6 °C to 33.0 °C for 

20 days (480 h). After retting, the plants were passed through a mechanical process (breaking, 

scutching), after which fibres were obtained. 

3.2.2 Osmotic degumming  

SJL samples were placed in a 2000 mL glass gauge filled with warm water and placed in a tank 

full of water heated to a temperature of 30 °C. One end of the rubber hose was immersed in the 

glass gauge and the second end was immersed in a small plastic container. This method uses 

natural physical laws such as water diffusion, osmosis and osmotic pressure. Osmotic 

degumming of SJL plant lasted 28 days (672 h), after which fibres were obtained by mechanical 

processes (breaking and scutching). 

3.2.3 Alkali retting under microwave energy 

The microwave radiation treatment of the fibres was carried out in a microwave oven Tristar 

MW-2896. Fresh SJL stems were cut into 20 cm length and 50 g of samples were placed into 

600 ml of 5 % NaOH solution and treated under microwave irradiation for 10 minutes, 2.45 

GHz frequency and using power of 900 W. Since microwaves also influence the efficiency of  

fibre treatment, the maximum temperature of SJL stems inside the reactor container was 

determined according to applied microwave energy. Thus initial energy of SJL stem presents 

amount of microwave power divided by the stem/NaOH solution content – 160 W/g.  The SJL 

stems were than washed in distilled water and fibres were extracted. Fibres were washed again 

in distilled water to obtain neutral pH and air dried. Such fibres were named Spartium junceum 

L. reference fibres. 

3.3 Chemical modification of SJL fibres 

3.3.1 Alkali treatment 

Fibres were treated with 5 % (w/v) NaOH solution, maintaining a fibre/solution ratio of 1:20 

(by weight) for 48 hours at 25 °C and washed with distilled water repeatedly to avoid any 

presence of alkali. At the end fibres were neutralized with 1 % acetic acid and washed again 
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with distilled water. Alkali treated fibres were dried in the oven at 60 °C for 24 hours and stored 

at ambient temperature in a desiccator. 

3.3.2 Alkali and Nanoclay (MMT) treatment 

5 % (w/v) NaOH solution was heated for 15 minutes at 60 °C. Nanoclay was added inside and 

the treatment continued for 30 minutes at the same temperature with the constantly mixing, 

prior the fibres being immersed. Fibres/nanoclay ratio was 1:1 and fibre/solution ratio was 1:20. 

Fibres were treated in the solution for 1 hour at 60 °C. Finally, fibres were washed with distilled 

water, dried in the oven at 60 °C for 24 hours and stored at ambient temperature in a desiccator. 

3.3.3 Nanoclay and Citric acid (CA) treatment 

Solution of 2.2 g citric acid, 1.1 g NaH2PO2, 5 g of nanoclay and 330 mL of water was prepared 

and treated at 80 °C for 3 hours with continuous stirring. After the solution was cooled to the 

room temperature fibres were immersed and left overnight. After this treatment the fibres were 

washed with distilled water, dried in the oven at 60 °C for 24 hours and stored at the ambient 

temperature in a desiccator. 

3.4 Composite manufacturing 

After pre-treatment, the fibres were cut to the length of 2-5 mm. PLA pellets were oven pre-

dried at 60 °C for 48 h and then melted in a vacuum oven at 170 °C. 20 wt. % of short fibres 

were put in an aluminum oval shaped mould, together with melted PLA. The 15 kg weight was 

placed on the mould (Ø 8.5 cm) and left for 2 h at room temperature. Intermediate composite 

product was placed between two aluminum sheets protected with release polymer film and 

preheated in a compression molding machine at 170 °C. It was left with no load for 5 minutes 

and then hot pressed under 3.9 kN/m2 at 170 °C, for 5 more minutes. The sample was taken out 

from hot press and left to air cool down under 10 kg weight on the mold. 

3.5 Chemical composition of SJL fibres 

The major chemical constituents of SJL fibres were determined according TAPPI test methods. 

These include: ash, extractives, lignin, cellulose and hemicellulose.  

Ash content was determined in accordance with the TAPPI T 211 om-02 [102].  

A sample was ignited in a muffle furnace at 525 °C, burnt for 4 hours and ash content (wash) 

was calculated according (5): 
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 wash =ቀ
ଵିଶ


ቁ ∙ 100, % (5) 

where: 

𝑚1𝑎 – weight of moisture-free sample before ignition, g 

𝑚2𝑎 – weight of sample after ignition, g 

𝑚𝑜 – oven-dry weight of sample, g 

 

The determination of extractive content was carried out in accordance with the TAPPI T 204 

cm-97 [103].  

A weight chopped sample was extracted with a mixture of benzene-ethanol (C6 H6 – C2 H5 OH) 

solvent in a ratio 1:1 for 8 hours in Soxhlet apparatus. The material, extracted in a round bottom 

flask, was dried in an oven at the temperature of 80 °C to constant weight. The extracted content 

(wex) was calculated according (6): 

 wex=ቀ
ଶ௫ିଵ௫


ቁ ∙ 100, % (6) 

where: 

𝑚1𝑒𝑥 – oven-dry weight of flask, g 

𝑚2𝑒𝑥 – oven-dry weight of extract in flask, g 

𝑚𝑜 – oven-dry weight of sample, g 

 

The lignin content was carried out following the TAPPI T 222 om-11 [104]. 

The extracted sample, prior to being treated in distilled water for four hours, had been pretreated 

by 72 % sulphuric acid (H2SO4) for 2.5 hours. The solid residue lignin was obtained by filtration 

and drying in an oven at the temperature of 105 °C to constant weight. The Klason lignin content 

(wl) was calculated according to (7): 

 wl=ቀ
ଶିଵ


ቁ ∙ 100, % (7) 

where: 

𝑚1𝑙 – oven-dry weight of filter paper, g 

𝑚2𝑙 – oven-dry weight of filtered lignin + weight of filter paper, g 

𝑚𝑜 – oven-dry weight of sample, g 

 

Küschner–Hoffer method was used for the determination of cellulose content (wc). The 

extracted sample was treated in a mixture of nitric acid–ethanol (HNO3 –C2H5OH with a ratio 

of 1:4) in a hot water bath at the temperature of 100 °C. Solid/liquid ratio was 1:25. Treatment 

was preformed through four extraction cycles until the sludge became completely bleached. Its 
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filtration and drying in an oven at the temperature of 105 °C to constant weight provided 

Küschner–Hoffer cellulose, which was calculated according to (8): 

 wc=ቀ
ଵିଶ


ቁ ∙ 100, % (8) 

where: 

𝑚1𝑐 – oven-dry weight of filter paper funnel, g 

𝑚2𝑐 – oven-dry weight of funnel + extracted cellulose, g 

𝑚𝑜 – oven-dry weight of sample, g 

 

Hemicellulose content (wh) was determined by deducting the sum of the ash, extractives, lignin 

and cellulose content values from the maximum theoretical content of all components (100%). 

It was calculated according to (9): 

 wh=100 - (wash+ wex+ wl+ wc), % (9) 

 

3.6 Moisture regain and moisture content 

The moisture regain and content of the samples were determined according to ASTM D2495 -

07 using standard conditions for 24 h. Moisture sorption was calculated as a weight percentage 

of absolute dry material, while moisture content was expressed as a percentage of the samples 

total weight. Moisture regain (𝑀𝑟) is defined with the following formula (10):  

 
𝑀𝑟 =

𝑀1 − 𝑚𝑜

𝑚𝑜
, % (10) 

where:  

M1– weight of a sample before drying, g 

mo – oven-dry weight of sample, g  

Moisture content (MC) is defined with the following formula (11):  

 
MC =

𝑀1 − 𝑚𝑜

𝑀1
, % (11) 

where:  

M1– weight of a sample before drying, g 

mo – oven-dry weight of sample, g  

3.7 Density measurement 

Helium gas pycnometer AccuPyc 1330, Micromeritics, USA was used to determine the real 

density of SJL fibres. Density measurements were carried out using 14-15 g of fibres and 10 
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runs for each sample at room temperature in a 100 cm3 cell. Samples were oven dried 24 h prior 

the test. Calculation was done according to BS EN ISO 1183-3:1999.  

3.8 Tensile properties of SJL fibres 

Breaking tenacity, elongation and fineness of individual fibres were examined using the 

Vibroskop 500 and Vibrodyn 500 devices, Lenzing Instruments, Austria. Preload, testing speed 

and gauge length values were 1500 mg, 3 mm/min and 5 mm respectively. Samples were 

conditioned at the standard temperature (20 ± 2 °C) and relative humidity (65 ± 4 %). An 

average of 150 tests for individual fibres was used in this study. 

3.9 Tensile properties of SJL composites 

Tensile tests for composite materials were carried out using Instron 5584 testing machine, 

Instron, USA at a crosshead speed of 3 mm/min and 20 mm gauge length. Five samples of each 

category were tested and their average values were reported. 

Micromechanical characterisation of composites, predicting its tensile strength and tensile 

modulus were performed on the basis of mathematical models: Modified rule of mixtures, 

Hirsch model and Cox-Krenchel model.  

The modified rule of mixtures (RoM) was used for composite tensile strength (σC) and tensile 

modulus (EC) prediction, according the equation (12) and (13). 

 

 σC = fc·σF·VF+σM·VM (12) 

 EC= ŋ·EF·VF+EM·VM (13) 

Where:  

σF and σM - tensile strength of the fibre and matrix, MPa 

VF and VM – volume fractions of the fibre and matrix, % 

EF and EM - tensile modulus of fibre and matrix, GPa 

 

The compatibility factor for tensile strength prediction (fc) is expressed according to Fu and 

Lauke [105] as (14): 

 fc= ŋo·ŋl (14) 

 

The value of orientation factor (ŋo) for fibres arranged in planar random fashion is 0.375, while 

the length & interface factor (ŋl) can be obtained using interfacial shear strength (τ) and critical 
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fibre length (Lc) [106, 107]. The obtained value of the interfacial shear strength, considering 

the matrix strength, according to Von Misses criterion [106], was 10.21 MPa. Mean fibre length 

(L) was assumed to be 2.5 mm. The compatibility factor (ŋ) for composites tensile modulus 

prediction was expressed using Cox-Krenschel model for computing ŋl according to (15) and 

(16) while ŋo was taken from the literature [105] and is 0.2. 

 ŋl=1-tanh(βL/2)/(βL/2)                                                                                                                (15) 

 

 
β =  

1

𝑟 ඩ

EM

EF(1 − ν)Lnට
𝜋

4𝑉F

 
(16) 

where:  

β - coefficient of stress concentration rate at the ends of the square packing fibres  

L - fibre length inside the composite material, mm 

r - fibre radius, µm  

ν - Poisson’s ratio of the matrix, which is assumed to be 0.36 for PLA matrix 

 

The Hirsch model presented in the equations (17) and (18) is a combination of parallel and 

series models where βH is the parameter that determines the fibre-matrix stress transfer. Its 

value is 0.1. 

 

 σC = βH(σF · VF +  σM · VM) + (1 − βH)
σM · σF

σM · VF + σF · VM (17) 

 

 EC = βH(EF · VF +  EM · VM) + (1 − βH)
EM · EF

EM · VF + EF · VM (18) 

3.10 Scanning electron microscopy SEM 

Morphological features of SJL fibres and composites were studied by using scanning electrone 

microscope FE-SEM//Mira, Tescan, Czech Republic. SEM microscope was operated at 20 kV 

and various magnification levels due to the need to obtain a good SEM image. Prior to the SEM 

measurements samples were coated with Au/Pd in order to increase their electrical conductivity. 

3.11 Fourier transform infrared spectroscopy FTIR  

Untreated and treated SJL fibres were evaluated for their surface chemistry by Spectrum 100 

FTIR spectrometer, Perkin Elmer UK using attenuated total reflection method. All spectra were 
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registered from 4000 cm-1 to 380 cm-1, with a resolution of 4 cm-1 and four scans. The 

background was collected at the beginning of the measurement. Three different measurements 

for each fibre were evaluated, and the average value was considered. Collected data were 

analyzed using Spectrum software version 10.4.3.339. The raw spectra were converted from 

transmittance to absorbance, exposed to auto baseline and auto smooth corrections. The 

resulting spectra were normalized by the absorbance of the peak at 1158 cm-1 or 1129 cm-1 

which is assigned to C-O-C assymetrical stretching. The intensity values of second derivative 

peak heights for each sample (used for quantification based on the consistency of signal 

amplitude after concentration normalization) were used to calculate the three standard 

crystallinity indexes: total crystallinity index (TCI), lateral order index (LOI), and hydrogen 

bond intensity (HBI) [108].  

The total crystalline index (TCI) is determined by the absorbance ratio from 1370-1372 cm-1 

(A1372) and 2900 cm-1 (A2900) bands according (19) [109]: 

 TCI  = A1372/ A2900 (19) 

 

The lateral order index (LOI) is determined by the absorbance ratio from 1425 cm-1 (A1425) and 

895 cm-1 (A895) bands as follows (20): 

 LOI  = A1425/ A895 (20) 

 

The hydrogen bond intensity (HBI) is determined by the absorbance ratio from 3300 cm-1 

(A3335) and 1315 cm-1 (A1315) bands as follows (21): 

 HBI  = A3300/ A1315 (21) 

 

TCI corresponds to the C-H stretching and LOI corresponds to a CH2 bending vibrations. Care 

was taken to ensure all samples remained dry during sample preparation and FTIR analysis. 

The carbonyl index was calculated by the ratio of the peak intensity between the carbonyl and 

methyl group at 1750 -1756 cm-1 and 1454 cm-1 to 1455 cm-1, respectively according to (22): 

 

 CI  = A1755/ A1455 (22) 
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3.12 Zeta potential 

Surface properties of the fabrics were characterized by zeta potential calculated from streaming 

potential. Fabrics were placed in the adjustable gap cell of an SurPASS instrument from Anton 

Paar GmbH, Austria. Streaming potential of the fabrics was measured varying the pH of an 

electrolyte solution (1 mmol/l KCl). 

3.13 Thermogravimetric analysis TGA 

Thermal degradation of the investigated samples was analyzed by thermogravimetric analyzer 

Pyris 1 TGA, Perkin Elmer, UK. Samples were heated from 30 °C to 800 °C with the heating 

rate of 10 °C/min in a nitrogen flow of 30 mL/min.  

Thermogravimetric data have been also used to determine kinetic parameters of SJL composites 

using different kinetic models. The energy of activation was calculated employing the integral 

method of Broido model.  The equation used for the calculation of activation energy (Ea) is (23 

and 24): 
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  (24) 

Where:  

Wt – weight of sample at any temperature t, g  

Wf – final weight, g  

Wi – initial weight, g 

R – gas constant 8.314 JK-1mol-1  

T – temperature, K 

By plotting lnln (1/Y) against 1/T at constant heating rate, Ea/R was obtained from the slope of 

the line. 

3.14 Differential scanning calorimetry DSC 

Glass transition temperature (Tg), melting temperature (Tm) and cold crystallization 

temperature (Tcc) were investigated by differential scanning calorimetry (DSC) using Perkin 

Elmer DSC 8000 instrument. DSC measurements were carried out on samples weighting 



Zorana Kovačević: Development of Advanced Polylactide Nanobiocomposite Reinforced with Spartium junceum L. fibres 

36 
 

approx. 5 mg. Samples were analyzed in three replicates using a heating/cooling rate of 10 

°C/min under nitrogen atmosphere. For heating–cooling-heating measurements, the following 

thermal procedure was used: first heating from 25 °C to 250 °C, held for 5 minutes to remove 

the thermal history, cooling from 250 °C to 25 °C and held again for 5 min. The degree of 

polymer crystallinity (X) of the samples was calculated by the heat of fusion for the tested 

samples and a reference sample with 100 % crystallinity using the following relation (25): 

 

 X  = 
∆ୌ୫ି∆ୌୡୡ

∆ୌଵ% 
∙ 100  , % (25) 

where:  

∆Hm – enthalpy of fusion, J/g  

∆Hcc – cold crystallization enthalpy, J/g  

∆H100% – enthalpy of fusion for 100 % crystalline PLA which is 93.1 J/g 

3.15 Microscale combustion calorimetry MCC 

The heat of combustion of the gases evolved during controlled heating of the SJL composite 

samples was investigated on MCC-2, Govmark, US. Measurement was performed in three 

replicates according to ASTM D7309.  

3.16 Biodegradability 

The weights of the oven dried samples were measured prior to immersing them in separate vials 

containing approx. 1 mL of buffer (pH 9) and Savinase enzyme. The buffer solution was 

prepared in a 25 mL flask by adding 2.66 ∙ 10-5 mol/mL CaCl2, 5 mL 1 % Triton solution and 

100, 250 and 500 mg respectively of Savinase enzyme, while pH 9 buffer was added to the 25 

mL mark on the volumetric flask. Since measurements were made on the basis of 5 parallel 

tests, every single test vial was filled up with 1 mL of buffer/enzyme solution containing 4, 10 

and 20 mg of Savinase and approx. 20 mg of investigated composite material. The enzymatic 

degradation was performed in the laboratory oven operated at 37 °C for 5 days.  
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The percentage weight loss after enzymatic degradation (∆m24,72,120) was measured according 

to equation (26). 

 

 ∆m24,72,120 = (Wi-W24, 72, 120)/Wi*100 (26) 

 

where: 

Wi - initial weight of completely dry sample measured after oven drying at 105±5 °C, g 

W24, 72, 120 - weight of completely dry sample after enzymatic degradation within a certain time 

period (24 h, 72 h and 120 h), g 

3.17 Determination of biofuel quality 

Residue samples after fibre extraction were grounded in a laboratory grinder IKA 

Analysentechnik GmbH, Germany. Three replicates of each sample were measured in order to 

provide reproducibility of the analysis. The biomass samples were analysed according to the 

following standard methods: moisture content HRN EN 18134-2:2015, ash content HRN EN 

ISO 18122:2015, coke content and volatile matter HRN EN 15148:2009 and fixed carbon by 

difference. Carbon (C), Hydrogen (H), Nitrogen (N) and Sulphur (S) were determined by the 

method of dry combustion in a Vario Macro CHNS analyser, Elementar Analysensysteme 

GmbH, Germany according to the standard methods HRN EN 15104:2011 and HRN EN 

15289:2011. Oxygen content was calculated by difference according to the following formula 

(27): 

 

 O = 100 – C(% db) – H(% db) – N(% db) – S(% db) – ash (% db), % db  (27) 

where: 

db - stands for dry basis  

Heating value was determined according to the HRN EN 14918:2010 standard method by using 

an oxygen bomb calorimeter IKA C200, Analysentechnik GmbH, Germany.  
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4 DISCUSSION 

4.1  Fibre quality 

The last 10 years have witnessed a huge interest for composite materials reinforced through 

natural fibres. The most commonly used fibres include cotton, pineapple, bamboo, followed by 

flax, hemp, sisal and jute. Considering the number of scientific research articles on natural 

fibres in composites (Figure 9), it can be seen that flax fibre is the most frequently used 

reinforcement fibre in the composite material production in the group of bast fibres (flax, hemp, 

jute, ramie, etc.).  

 

 

Figure 9: Number of recent research articles about natural fibres in composites. Cross-reference search criteria 
within WoS (by search term: ''fibre name'' composite and by title or keyword: ''fibre name'' composite)  

Since SJL fibres also belong to the group of bast fibres, the purpose of this research was to 

answer the question whether the quality of SJL fibres is comparable to flax fibres. This part of 

research was conducted in cooperation with our partnering institution Institute of Natural Fibers 

and Medicinal Plants (INFMP), Poznan, Poland, during the research secondment in duration of 

2 months. 

Bast fibres are obtained from the outer layer (inner bark of the phloem) of bast surrounding the 

plant stem (Figure 6 in [109] and Figure 10 from this thesis). The fibres are usually very long 

(as long as stem) and relatively strong [51, 110].  
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Figure 10: SEM micrograph of cross section of SJL stem with fibres visible in the outer layer of bast (Hitachi S-
3400N, Institute of Natural Fibers and Medicinal Plants, Poland) 

 

Key parameters for the determination of fibre quality are strength, fineness, length and length 

uniformity, method of fibre extraction, moisture content, color grade, climate factors 

throughout the season and soil quality [111]. Some of them were investigated in this research: 

4.1.1 Fibre extraction process 

There are many extraction techniques such as manual (hand decortication), mechanical 

(mechanical decortication and crushing), chemical (acid, alkali, enzymes), biological (running 

water, sea and distilled water retting, dew retting), physical (steam explosion, ultrasound 

oscillation, osmotic degumming) or their combinations (DiCoDe process, microwave process) 

[56, 112-115]. The manual extraction method yields good quality fibres, but it is a difficult and 

time-cosuming process. The common aim was to determine extraction techniques that are 

economically feasible but withhold chemical and physical properties of natural material such 

as length, fineness, breaking tenacity, purity, optimal efficiency and homogeneity [112]. 

This thesis investigates three extraction methods: biological/mechanical (water retting with 

mechanical decortication - WR), physical/mechanical (osmotic degumming with mechanical 

decortication - OD) and physical/chemical (alkali retting under microwave energy - MW) 

method. 

Fibre fineness is one of the intrinsic fibre properties. Fibre fineness is directly connected with 

fibre width and since the cross sectional shape of fibres varies, ''dtex'' unit has been accepted as 

a SI unit of fibre fineness [116, 117]. In Table 4 it can be seen that MW extracted SJL fibres 
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show increase in fineness comparing to other two types of fibre treatment (WR and OD) which 

leads to less stiffness. 

Table 4: Prime quality parameters of SJL fibres extracted by various treatments 

 Breaking tenacity (cN/tex) Fineness (dtex) Elongation (%) 

WR 40.66 ± 1.85 41.17 ± 1.74 3.48 ± 0.14 

OD 46.21 ± 1.94 40.97 ± 1.46 5.01 ± 0.19 

MW 64.44 ± 1.80 36.75 ± 1.81 6.03 ± 0.18 

where WR is water retting extraction method; OD is osmotic degumming method and MW is alkali retting under 

microwave energy. Results are presented as mean value within 95 % confidence interval. 

 

 
Figure 11: Tensile strength (MPa) for Spartium junceum L. fibres extracted by different methods (where WR is 
water retting extraction method; OD is osmotic degumming method and MW is alkali retting under microwave 
energy) calculated using fibre cross section area which is approximated to circle shape [118] 

 

Since the bundle of fine fibres has more accessible surface area than the same volume of the 

coarser fibres, its targeted chemical modification leads to more promising results [120, 121]. 

Fibre fineness depends on the structural characteristics of the secondary cell wall which mainly 

consist of cellulose, but there is also a minor amount of xylan and lignin [111]. Lignin content 

from the secondary cell wall, altough in low quantity, is able to affect fibre fineness in a way 

that coarser fibres show higher lignin content [122, 123, 124]. Fibre fineness can also reflect 

the degree of fibre separation during the extraction method. 

Fibre biological fineness is influenced by genetics, but also affected by environment and fibre 

processing techniques [121, 123]. The highest elongation at break (6.03 %) and breaking 
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tenacity (64.44 cN/tex) values were determined for MW extracted SJL fibres, implying the 

increased toughness of the SJL fibres obtained by MW treatment (Figure 11). 

4.1.2 Moisture regain 

Natural textile fibres are hygroscopic and they absorb or release moisture, depending on the 

humidity of the surrounding air and the moisture loss. Gain occurs at every stage from the initial 

processing of fibres until the end product [125]. Change in moisture content has a direct impact 

on the fibres properties i.e. handle, comfort, weight, strength, abrasion resistance, colour 

stability, etc. Moisture content of various textile fibres is presented in Table 5. 

 

Table 5: Moisture regain of various textile fibres [125] 

Material Moisture regain at 65 % RH and 20 °C (%) 

Cotton 7-8 

Mercerised cotton Up to 12 

Hemp 8 

Flax 7 

Jute 12 

Viscose 12-14 

Silk 10 

Wool 14-18 

Polyamide 4.1 

Polyester 0.4 

Acrylic 1-2 

Modacrylic 0.5-1 

Polylactic acid 0.4-0.6 

Para-aramid (Kevlar, Twaron) Low modulus 7  

High modulus 1.2 

Meta-aramid (Nomex) 5 

Polyethylene 0 

Polypropylene 0 

Glass 0 

 



Zorana Kovačević: Development of Advanced Polylactide Nanobiocomposite Reinforced with Spartium junceum L. fibres 

42 
 

Low moisture regain or low hygroscopic values of fibres affect the processing of fibres (fibres 

become more brittle and subjected to damage during processing, increase of static electricity, 

poor results of dyeing and finishing). Man-made fibres have low moisture regain which causes 

end users to feel uncomfortable wearing such products, but a majority of people agree that 

cotton is highly comfortable with its 7-8 % of moisture regain [126, 127]. The moisture regain 

of SJL fibres obtained from various treatments was investigated under 65 % of relative humidity 

at 22°C. It ranges between 7.14 and 7.76 % as presented in Figure 12. Fibres processed under 

MW treatment have higher moisture regain, which is due to the more succesful pectin, lignin 

and wax removal. The presence of lignin decreases moisture absorption, since lignin is 

hydrophobic and its layers in the inner middle lamella hinder the penetration of moisture into 

the cellulosic cell wall. Thus, the moisture sorption appearance in bast fibres is more complex 

than in the case of cotton fibres [128]. SJL fibres are composed mainly from cellulose and 

hemicellulose. Hemicellulose possess free hydroxyl groups important for the absorption of 

water that penetrates inside the amorphous regions of fibre in the form of water vapour or liquid 

state water. Thus, absorption of water is proportional to the extent of noncrystalline, less 

oriented regions assuming that tested fibres have constant number of free hydroxyl groups. 

Therefore, changes in moisture sorption of fibres influences changes in chemical composition, 

crystalinity and changes in pore structure [128].  

 

 
Figure 12: Moisture regain of Spartium junceum L. fibres extracted by different methods where WR is water 
retting extraction method; OD is osmotic degumming method and MW is alkali retting under microwave energy 
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4.1.3 FT-IR spectra 

The ATR-FTIR spectra of Spartium junceum L. fibres extracted by different methods of 

maceration are shown in Figure 14.  

Bast  fibres are multicellular and present a complex structure made of biopolymers composing 

the core structure of the cell walls. As the main component, cellulose macromolecules 

crystallize in microfibrils which are oriented along the fibre axis with a helix angle around 5 ° 

to 10° and embedded in a matrix of non-cellulosic components such as hemicellulose, lignin, 

pectins and proteins (Figure 13).  Cellulose and noncellulose content affects strength and break 

extensions of natural fibres. Cell walls are made of an outer layer, the primary wall (P)  and 

concentric inner layers forming the secondary walls (sublayers - S1 and S2), in which various 

biopolymers are distributed and organised, thus forming a multi-component and tri-dimensional 

fibrillar structure. These individual fibre cells (elementary fibres) are usually assembled in fibre 

bundles (technical fibres), within the stems of plants. The elementary fibres are small and short, 

but in bundles they provide the reinforcement to stems [129, 130].  

 

 

 

 
Figure 13: (A) Layers forming elementary fibre; (B) Arrangement of the different components of the S2 cell wall 
[131] 
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Table 6: Main Infrared (IR) transitions of  Spartium junceum L. fibres [108, 132-136] 

Wavenumber (cm-1) Vibration Sources 
3200-3400 OH stretching Cellulose, Hemicellulose 

2917-2919, 2850 C-H symmetrical stretching Cellulose, Hemicellulose 
1730 C=O stretching vibration Pectin, Waxes 
1635 OH bending of absorbed water Water 
1537 aromatic skeletal vibrations and C=O 

stretch  
Lignin 

1510-1515 C=C aromatic symmetrical stretching Lignin 
1456 C-H and C-O deformations, bending or 

stretching vibrations in lignin and 
carbohydrates 

Cellulose, Hemicellulose, 
Lignin 

1426 HCH and OCH in-plane bending 
vibration 

Cellulose 

1368 In-the -plane CH bending Cellulose, Hemicellulose 
1335 C-H vibrations, O-H in plane bending 

and S ring stretching 
Cellulose, Hemicellulose, 

Lignin 
1316 CH2 rocking vibration Cellulose 
1239 C=O and G ring stretching Lignin 
1204 C-O-C symmetric stretching Cellulose, Hemicellulose 
1158 C-O-C asymmetrical stretching Cellulose, Hemicellulose 
1105 C-O-C glycosidic ether Cellulose 

1051,1030,1000 C-C, C-OH, C-H ring and side group 
vibrations 

Cellulose, Hemicellulose 

985 C-O valence vibrations Cellulose 
895 COC, CCO and CCH deformation and 

stretching 
Cellulose 

836 Out of plane aromatic CH Lignin 
795-797 -CH- twisting (out of plane) of the 

aromatic ring 
Lignin 

781 Deformation vibrations of C-H bonds in 
associated to aromatic rings 

Lignin 

 

Band assignations of SJL fibres are summarized in Table 6. FTIR absorption spectra indicated 

structural differences between SJL fibres treated by different extraction methods, which are 

presented in Figure 14. Usually, FTIR spectra are divided into 4 regions: 4000 cm-1 -2500 cm-1 

characterized with X-H single bonds i.e. C-H, O-H, etc.; 2500 cm-1 – 2000 cm-1 characterized 

with triple bonds, i.e. C≡C; 2000 cm-1 – 1500 cm-1 characterized with double bonds i.e. C=C 

and fingerprint area from 1500 cm-1 – 400 cm-1 characterized with single bonds, i.e. C-C bond.    

A large absorption band detected within range of 3200-3400 cm-1 is attributed to the –OH group 

while bands at 2918 cm-1 and 2850 cm-1 are attributed to CH2 and CH groups of cellulose, 

hemicellulose, pectin, fats and waxes [116, 137, 138]. Furthermore, disappearing of the peak at 

2850 cm-1 in the MW extracted SJL fibre indicates that the treatment was successful in 

removing lipophilic components such as waxes and oils, compared to the other two maceration  
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treatments (WR and OD). Band at 1730 cm-1 is characteristic for the free –COOH groups of 

polygalacturonic acid, which is the main constituent of pectins. Pectins are situated in the 

middle lamella and their role is to act as a ''glue'' that connects the macrofibrils and ensure the 

cohesion of fibre bundles [138]. Absence of this peak in MW treated SJL fibres indicates 

successful removing of pectins which is also confirmed with fineness testing (Table 4).  The 

absorption band at 1635 cm-1 corresponds to adsorbed water and derived from hydrogen 

bonding in the amorphous region of the cellulose macromolecules [139]. In MW extracted SJL 

fibres this peak is broader and has lower intensity than the other two spectra, which is due to 

the removal of the hemicellulose after MW treatment and leads to an increase in the internal 

organization of the cellulose chains (a closer packing of the cellulose chains), allowing the 

establishment of highly crystalline regions, which improve the fibres strength and its properties 

(Table 4) [117]. The absorption bands at 1537 cm-1, 1513 cm-1, 1239 cm-1, 836 cm-1 and  800-

780 cm-1 correspond to stretch vibrations of C=O and C=C linkages of aromatic ring, CO stretch 

of the acetyl group and out of plane CH deformations of aromatic ring present in lignin, 

respectively [140, 141]. Absence of band at 1537 cm-1 and low intensity of band at 1513 cm-1 

indicates effective lignin removal in MW extracted SJL fibres [142]. The peak at 1239 cm-1 is 

a CO stretch of the acetyl group of lignin and CO linkage in guaiacyl aromatic methoxyl groups. 

Therefore, its dissapearance in MW extracted SJL fibres also confirms the elimination of lignin. 

Peak at 1158 cm-1 presents C-O-C asymmetrical stretching of Pyranose ring in cellulose and 

hemicellulose [143]. The absorption band at around 1420-1430 cm-1 is associated with the 

crystalline structure of the cellulose, while the band at 895 cm-1 is allocated to the amorphous 

structure of the cellulose [144]. The absorption bands at 1105, 1051 and 1030 cm-1 are assigned 

to COC glycosidic ether, CO stretching vibrations of acetyl xylan and CO stretching vibrations 

of the polysaccharide components, mainly cellulose. Peaks at 1000 and 985 cm-1 (CO and ring 

stretching deformations in cellulose) are visible only as shoulders in the spectra of WR and OD 

extracted fibres pointing to more developed secondary cell wall of MW extracted SJL fibres, 

which makes a major contribution to the mechanical strength of such fibres [139]. 

FTIR analysis was successfully used to characterize the efficiency of applied extraction 

methods. 

Chemical modifications can be used to finalize the separation process and improve fibre quality. 

[116]. 
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4.2  Fibre functionalization  

As presented in the previous chapter, SJL fibres extracted by MW method have better quality 

than fibres extracted by WR or OD method, while in this chapter, the emphasis will be placed 

on their modification in order to meet the requirements of current attractive sectors, i.e. 

construction and automotive industry.  

Hydrophilicity of natural fibres presents the biggest problem in the adhesion of fibre with 

polymer matrix. Therefore, it is necessary to modify the fibre or polymer to enhance the 

properties of the final material [145]. Surface treatment reduces the hydrophilicity of the fibres 

by lowering the number of hydroxyl groups in the fibres. This leads to the improvement of 

adhesion between fibres and polymers. Some of the most common fibre surface chemical 

modifications are [65-69, 77, 78]: 

 

1. Alkali treatment (removes impurities from the fibre surface and breaks the hydrogen 

bonds within the structure which increases the surface roughness) 

2. Coupling agents treatment (contain the chemical groups that can react with both the 

fibre and the polymer, thus leading to compound cross linking by covalent bonding) 

3. Acetylation (reaction of hydroxyl and acetyl functional groups called esterification 

which causes the reduction of cellulosic fibres hygroscopic nature) 

4. Graft copolymerization (usage of various functional groups: metyl groups, isocyanates, 

triazine, organosilanes, etc.) 

5. Enzyme treatment (removes impurities from the fibre surface which results in better 

adhesion between fibre and polymer matrix) 

6. Nanoparticle treatment (chemical or mechanical binding of nanoparticles to the surface 

of fibres with the aim of improving compatibility between fibres and polymer). 

 

Spartium junceum L. fibres were modified with comercial and newly synthesized nanoparticles 

with precisely targeted properties aiming at flame retardant protection of the material.  

Structural, thermal, mechanical and physio-chemical properties of fibres modified with alkali 

(NaOH) and commercial nanoclay were investigated and presented throughout four published 

papers [146-149], while thermal properties of SJL fibres modified with newly synthesized 

nanoparticles were analyzed but have not been published yet. 
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After the MW extraction method, SJL fibres (MWR) were additionally modified with NaOH 

(1F) and with nanoclay (2F and 3F). One of the inherent drawbacks of natural plant fibres is 

their variability of properties. The variability of the physical and mechanical properties mainly 

originates from the variation in their chemical structure and composition, such as cellulose 

content, degree of polymerization, orientation of molecular chains, crystallinity, etc. These 

parameters are highly dependent on the growth conditions of the plant and also on the fibre 

extraction methods. Therefore, natural fibres extracted from plants or grown in different 

locations and weather conditions present huge variability in their properties [150].  

4.2.1 Structural properties 

Structural properties were investigated by means of chemical composition assessment SEM and 

EDS analysis.   

Plant fibres are made of highly complex organic matrix which consists of three main 

components: cellulose, hemicellulose and lignin and of small quantities of ash and extractives 

(Table 7). Quantity of these constituents was determined by isolating, purifying and quantifying 

the components by weight [49]. 

 

Table 7: Chemical composition of SJL reference and modified fibres 

  
Cellulose [%] 

Hemicellulose 
[%] 

Lignin [%] Ash [%] 
Extractives 

[%] 

MWR 91.826 ± 0.325 2.994 ± 0.795 3.419 ± 0.700 0.030 ± 0.001 1.731 ± 0.204 
1F 90.066 ± 1.152 5.756 ± 1.626 3.303 ± 0.564 0.045 ± 0.029 0.829 ± 0.073 
2F 92.026 ± 0.258 4.112 ± 0.541 3.202 ± 0.778 0.023 ± 0.013 0.637 ± 0.046 
3F 92.385 ± 0.161 2.620 ± 0.433 3.979 ± 0.508 0.003 ± 0.002 1.010 ± 0.063 

Where MWR is reference SJL fibre extracted by alkali retting under microwave energy, 1F is SJL fibre additionally 

modified with alkali, 2F is SJL fibre modified with alkali and nanoclay, 3F is SJL fibre modified with nanoclay 

and citric acid. Results are presented as mean value within 95 % confidence interval. 

 

Among these four fibre modifications, cellulose content was in the range from 90.07 % to 92.39 

%. The highest cellulose content was observed in SJL fibres modified with nanoclay and citric 

acid, pointing to stronger fibres of improved quality from the chemical composition point of 

view. The ash content of all tested fibres is low, indicating the absence of various chemicals of 

metallic or mineral matters and suggesting good quality of products consisting of such fibres 

[151]. The removal of the hemicellulose after alkali treatment removed the inner limitations 

and the fibrils became more capable of rearranging themselves in a compact manner. This leads 



Zorana Kovačević: Development of Advanced Polylactide Nanobiocomposite Reinforced with Spartium junceum L. fibres 

49 
 

to a closer packing of cellulose chains, which have improved the fibre strength and its tensile 

properties [117]. Higher content of hemicelluloses in fibres 1F and 2F indicates higher moisture 

absorption and faster thermal degradation, because hemicellulose and lignin remain dispersed 

in the interfibrillar region separating the cellulose chains from oneanother which affects the 

formation of more amorphous phase. Lignin is an undesired polymer but all modified fibres 

show lignin content in the range of 3 to 4 % which makes the fibre strength increase and difficult 

to break. On the other hand, hydrophobic lignins act as a cementing agent and increase the 

stiffness of the cellulose/hemicellulose composite. Extractives are plant components of 

lipophilics and hydrophilics and their presence in fibres increases the consumption of chemicals 

in the production process and reduces yield [152].  

Results of SEM and EDS analyses were presented in [149] and show surface morphological 

characteristics, as well as relative chemical composition of SJL modified fibres.  

Surface of reference fibre MWR was smooth and regular, while fibres 1F, 2F and 3F show 

increased roughness caused by additional treatment of technical SJL fibre with alkali and 

nanoparticles, respectively. Alkaline processing dissolves lignin phase in which cleavage 

reaction of various bonds between the units of lignin macromolecules occurs [153]. This 

treatment breaks down the fibre bundles to release the individual – elementary fibres with a 

higher aspect ratio and a rougher topography that increases fibre matrix adhesion, if such fibres 

are used as reinforcement in composite materials.  

EDS analysis has proven the presence of Si and Al atoms in nanoclay modified samples (2F 

and 3F) with an increase in Si and Al content in the fibre treated with nanoclay and citric acid 

(3F) which might be due to the formation of crosslinking caused by the interaction between the 

citric acid and hydroxyl groups of cellulose [154]. 

4.2.2 Physico-chemical properties 

IR spectra of SJL fibres obtained by different modification methods were presented in a paper 

published in Arabian Journal of Chemistry [147]. The differencies among modified fibres (1F, 

2F and 3F) are mainly in peak intensities of absorption bands. Absorption bands at 2844 and 

2900 cm-1 could be observed in the spectra of all fibres, but with higher intensity in the spectra 

of referenced fibres (MWR) pointing to the minor amount of pectins, waxes and fats inside 

other tested fibres. Nanoclay modified fibres (2F and 3F) showed broader peaks around 1040 

cm-1 due to Si-O plane stretching, while the absence or lower intensity of lignin characteristics 

peak at 1506 cm-1 for fibres 1F, while 2F and 3F indicate succesful delignification and a well-
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conducted maceration process. Chemical treatments of bast fibres are known to change the 

cellulose content, as well as the degree of crystallinity. The rigidity of cellulose fibres increases 

and their flexibility decreases with increase of the ratio of crystalline to amorphous regions. 

While the increase of crystallinity causes greater strength, decrease of crystallinity caused 

increased elongation, higher water intake since amorphous regions can absorb more water 

[155], and more sites available for chemical reactions. A parameter called crystallinity index 

(CI) has been used to present relative amount of crystalline or amorphous regions in cellulose. 

The CI has been determined by XRD, solid state  NMR, IR spectroscopy, Raman spectroscopy, 

etc. FTIR spectroscopy turned out to be the simplest method and in good correlation with the 

more detailed XRD method [156]. The crystalline characteristics of modified fibre structure 

were investigated in each FTIR spectra by comparing the peak of the functional group in 

crystalline region with a peak of other functional group in amorphous region.  

Table 8 presents the values of different crystallinity ratios (TCI, LOI, and HBI) for SJL 

reference and modified fibres. Usually, elevated TCI and LOI values indicate the highest degree 

of crystallinity and a more ordered cellulose structure, while lowest TCI and LOI values 

designate the amorphous structure of cellulose [108]. Reference fibres showed the lowest TCI 

index of 0.77 % pointing to higher crystallinity of modified fibres. Within modified SJL fibres, 

there was no significant difference regarding TCI index, which is visible from standard error of 

mean presented in Table 8.  LOI method is correlated to overall degree of order in cellulose 

[157].  All of the tested fibres showed similar LOI values indicating no significant difference 

in order in cellulose structure, although HBI value of sample 3 was significantly higher than in 

other samples. Hydrogen bond intensity of cellulose is closely related to the crystal system and 

the degree of intermolecular crystallinity, therefore it is assumed that cellulose chains of sample 

3 are highly organized and arranged in crystalline structure [158].  

Table 8: Main FTIR crystallinity indices for reference and modified SJL fibres 

Sample TCI [%] LOI [%] HBI [%] 

MWR 0.77 ± 0.007 0.69 ± 0.08 2.07 ± 0.20 

1F 0.97 ± 0.05 0.65 ± 0.03 2.04 ± 0.04 

2F 1.00 ± 0.07 0.63 ± 0.02 2.14 ± 0.12 

3F 0.90 ± 0.02 0.60 ± 0.01 2.42 ± 0.06 

Where MWR is reference SJL fibre extracted by alkali retting under microwave energy, 1F is SJL fibre additionally 

modified with alkali, 2F is SJL fibre modified with alkali and nanoclay, 3F is SJL fibre modified with nanoclay 

and citric acid, TCI is the total crystalline indeks, LOI is the lateral order indeks, HBI is the hydrogen bond 

intensity. Results are presented as mean value within 95 % confidence interval. 
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Changes in the surface chemistry of SJL modified fibres were determined by ζ-potential 

mesurement as a function of pH in the range of 2 <  pH < 10 by adding 1mM of KCl solution. 

The measured ζ-potential of SJL fibres changes towards more negative values in the higher 

acidic range. The isoelectric point (IEP) was found to be almost identical for all tested fibres 

(IEP ~ 2), indicating very similar chemical constitution of surface functional groups. Samples 

1F and 3F show IEP shifted to slightly higher pH values (IEP 2.15) and ζ-plateau values were 

more negative, indicating their less hydrophyllic surface in comparison to the (R) and (2) 

sample, thus making them more suitable for polymer matrix adhesion process. All these 

modification  processes  result  in  the  removal  of  non-cellulose components from  the  natural  

fibre  surfaces,  thus increasing  the  accessibility  of  surface functional groups  which can be  

used  in  further  chemical  modification  steps  to  increase  the  compatibility  of  natural  fibres  

to  non-polar polymers [159, 160].   

4.2.3 Thermal properties of SJL fibres 

Thermal properties of fibres were influenced by adding NaOH and nanoclay into the fibre 

structure. Results from TGA analysis were presented in the paper published in Autex 2017 

Book of Proceedings [149]. Water loss is observed at approx. 100 °C for all tested fibres and  

the significant weight loss occured in the temperature range 290-430 °C due to the thermal 

decomposition of hemicellulose, cellulose and lignin. Thermal decomposition of carbohydrates 

is a complex process which comprises of dehydration, depolymerization, fragmentation, 

rearrangement, repolymerization, condenzation and carbonization [161]. According to the 

literature [161, 162], degradation of hemicellulose occurs in the range 190-350 °C, followed by 

cellulose depolymerization visible in the temparature range below 400 °C and pyrolysis of 

lignin that takes place in the range below 800 °C. Hemicellulose has random and branched, 

relatively amorphous structure of lower molecular weight and is more readily decomposed 

compared to cellulose. Thermal stability of SJL fibres was influenced by cellulose content and 

its crystallinity. Lignin is thoroughly cross-linked and has very high molecular weight and 

thermal stability, and it is therefore difficult to decompose [108]. As can be seen in detail of 

Figure 15, sample 2F show a more significant weight loss, at around 250-260 °C, which might 

be due to higher volatility of its structural components. Mainly it is composed of cellulose, but 

according to Table 7 it also has approx. 4 % hemicellulose which is followed by more rapid 

degradation process, where degradation of one component may accelerate the degradation of 

the other fibre components [108].  
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Figure 15: TGA analysis of SJL fibres 

 

Table 9 presents several characteristic temperatures within thermal degradation process. The 

initial weight loss temperature, Ti, presents the temperature at which the sample loses 3% of its 

weight. Tshoulder is the onset temperature described as the initial stage of the degradation process. 

Comparing Ti and Tshoulder values of modified fibres, it is noticeable that sample 3F shows higher 

thermal stability than others, although its final decomposition temperature is lower comparing 

to other samples. Modified fibres showed higher residue content at 800 °C than reference SJL 

fibre which is due to more inorganic content inside the modified fibres (additional modification 

with NaOH for sample 1F and nanoclay modification for sample 2F and sample 3F). This 

feature might be explained by the highest lignin content in sample 3F compared to other tested 

samples and the higher crystallinity of this fibre, as presented in Table 8. Crystalline regions of 

cellulose improve the thermal stability of lignocellulosic fibres causing shifting of thermal 

decomposition of natural fibres to higher temperatures with an increase in the cellulose 

crystallinity [108, 155]. In addition, the higher value of hydrogen bond intensity of sample 3F 

indicates a more closed packaging cellulose structure that makes the heat transfer difficult, 

because the cellulose crystallinity domains act as barriers for the heat transfer, which possibly 

increases the fibre thermal stability. 
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It seems to be difficult to distinguish and model the thermal decomposition behavior of each 

specific component in lignocellulosic fibre, due to the complexity of the growth of the fibres, 

which causes variance in component contents, crystal structure and chemical composition 

within fibres of natural origin [163, 164]. 

 

Table 9: Thermal properties of SJL fibres 

Sample Ti (°C) 3 wt% loss Tshoulder (°C) DTG peak (°C) Residue at 800 °C (%) 

MWR 171 355 381 10.40 

1F 230 355 381 17.56 

2F 169 343 377 15.98 

3F 260 357 375 14.64 

Where MWR is reference SJL fibre extracted by alkali retting under microwave energy, 1F is SJL fibre additionally 

modified with alkali, 2F is SJL fibre modified with alkali and nanoclay, 3F is SJL fibremodified with nanoclay 

and citric acid 

4.2.4 Mechanical properties of SJL fibres 

Investigation of mechanical properties of SJL reference and modified fibres was published in 

the Arabian Journal of Chemistry [147]. Breaking tenacity, elongation, as well as linear density 

of individual fibres were examined by vibration method.  

 

Table 10: Fibre strength and Young modulus of SJL fibres 

Sample 
Fibre Density 

g/cm3 

Fibre Strength Young Modulus 

cN/tex MPa cN/dtex GPa 

MWR 1.55 ± 0.0026 64.44 ± 1.80 998.85 ± 27.97 114.45 ± 4.22 17.87 ± 0.66 

1F 1.55 ± 0.0019 60.00 ± 1.33 930.04 ± 20.62 118.71 ± 4.19 18.53 ± 0.65 

2F 1.55 ± 0.0027 68.84 ± 1.54 1067.04 ± 23.85 116.65 ± 4.30 18.21 ± 0.67 

3F 1.55 ± 0.0028 67.40 ± 1.42 1044.67 ± 22.00 114.82 ± 3.95 17.93 ± 0.61 

Where MWR is reference SJL fibre extracted by alkali retting under microwave energy, 1F is SJL fibre additionally 

modified with alkali, 2F is SJL fibre modified with alkali and nanoclay, 3F is SJL fibremodified with nanoclay 

and citric acid. Results are presented as mean value within 95 % confidence interval. 

 

From the published results and according to the new and summarised Table 10, it can be 

concluded that fibre strength is increased by nanoclay modification due to the MMT 

nanolayered structure. Alumino-silicate clay nanolayers possess high aspect ratio 
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(length/thickness) approx. 100-1000 nm which causes improved mechanical properties of 2F 

and 3F fibres [154, 165]. There is no significant difference in strength between sample 2F and 

sample 3F, indicating that CA usage in sample 3F affects only the interface adhesion with 

polymer in fibre-reinforced composite and has no influence on the SJL fibre strength. This 

phenomenon will be explained in more detail in the next chapter. 

Sample 1F reveals lower strength value in comparison to other fibres which is due to the 

repeated alkali treatment of fibres resulting with weaker or in some cases damaged fibre, 

confirming the hypothesis that higher alkali concentration influences fibre strength [166, 167]. 

It is visible from Table 10 that Young modulus of modified fibres is slightly higher than 

modulus of MWR, but with no significant difference between sample MWR and sample 3F. 

Lower modulus indicates softer fibres with higher cohesion forces [168]. Fibre diameter is 

inversely proportional to fibre strength since smaller fibre diameters smooth the way for stress 

transfer from fibre to matrix. However, the main indicators of mechanical properties lie in 

biochemical differences rather than morphological ones [169]. Basically, tensile strength and 

Young modulus of bast fibres increase with increasing cellulose content of the fibres while 

increase in the hemicellulose content leads to reduced strength since hemicellulose is 

amorphous in nature and nonhomogeneus in properties [170]. Usually, fibre strength is 

inversely proportional to fibre elongation, so fibres with a decrease in strength have an increase 

in elongation [155]. Despite this, as can be seen in Table 3 in our paper [147], MMT modified 

SJL fibres showed increase in both tensile strength and elongation at break, pointing to strong 

and tough fibre which can be used for wide-range industrial purposes, where a combination of 

lightness, strength and toughess is required.   

An example of SJL fibre fineness distribution is presented in Figure 4 in our paper [147]. There 

is no significant difference in fineness of tested fibres, except in the case of fibres modified 

with nanoclay. Sample 3F is slightly coarser, showing 63.3 % of fibres in the range of 30-45 

dtex. Its decreased fineness was assigned to the MMT particles which were efficiently bonded 

to the fibre surface due to the CA crosslinking ability. Fineness of fibres is an important factor 

in determining their stiffness. The distribution of 150 fibres shows high variability among the 

SJL fibres. High variability of natural fibre properties is a challenge when developing composite 

products based on bast fibres.  
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4.3  Biocomposites – mechanical and thermal properties induced by interface phenomena 

The contemporary challenge to scientists and engineers is to develop the technology which will 

revolutionalize biobased materials. Expectations are that two-thirds of the global chemical 

industry would be based on renewable resources [37]. Nowadays, the term ‘’bio’’ is a hot topic 

and a great number of novel technologies is incorporating it within their development strategies. 

One of the examples is the composite material technology, which has found a niche in 

biocomposite production, especially in the fibre-reinforced composite market, which is a 

multibillion-dollar business [171].  

This chapter will discuss the results of mechanical and thermal properties of PLA composite 

material reinforced with SJL fibres, which were investigated and presented in three published 

papers [146-148]. 

4.3.1 Mechanical properties of composite materials 

Tensile properties of natural fibre reinforced materials are mainly improved by adding fibres to 

a polymer matrix, since natural fibres show higher strength and stiffness values in comparison 

to matrix polymers. Therefore, the properties of composites are influenced by the hydrophilic 

and hydrophobic nature of fibre and polymer matrix, fibre content or amount of filler in matrix, 

fibre aspect ratio and its orientation, uniformity of its dispersion along the matrix, 

manufacturing techniques and process parameters. One of the most important parameters that 

influence tensile properties of composite materials is the interfacial adhesion between the 

matrix and the fibres [106]. Good interface causes increment of the stress transmission from the 

matrix to the fibre and thus enhances the tensile strength of the composite material [172]. 

Several chemical modifications are employed to improve the interfacial matrix-fibre bonding 

in natural fibre reinforced polymers, which is caused by poor compatibility between polar and 

hydrophilic fibres and hydrophobic polymer, resulting in the enhancement of tensile properties 

of the composites [173-177]. 

As already mentioned in chapter 3, the tenacity values of Sample 2F and Sample 3F were 

enhanced compared to Sample MWR, but some irregularities could be observed in its composite 

mechanical properties. Tensile strengths for CR, C1 and C3 fibre reinforced composites were 

increased compared to the sample C2. Its increment in strength was increased by more than 100 

%, which denoted an inappropriate interface of C2 composite.  Even though sample 1F showed 

a decrease in strength caused by more concentrated alkali treatment, its composites have shown 

the increase in strength of 115 % compared to C2. This phenomenon is probably induced by 
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filling of voids inside the fibre with melted polymer, leading to the improvement of fibre/PLA 

adhesion mainly due to mechanical interlocking mechanisms [174, 178]. Sample C3 showed 

the highest strength and modulus values, indicating higher material stiffness, while SEM 

analysis revealed its smoother fractured surface in comparison to other samples, indicating 

better interfacial adhesion between the reinforcement and the matrix. These results indicated 

significant influence of nanoclay modification on the composite material's strength. Only in 

case nanoclay particles are coupled with citric acid, the interconnection of all composite phases 

(matrix-fibre-nanofiller) is enhanced. The result is a decrease of fibres pulled out from the 

fractured surface in comparison to CR, C1 and C2 samples. Such enhanced interface quality of 

sample C3 was proved by FTIR analysis. The intensity of the peak at 1750 cm-1, significative 

to C=O stretching, is higher than in other tested samples and suggests the increase of the number 

of free carboxylic end groups in the polymer chain due to citric acid crosslinking. The intensity 

of peak presenting –OH bending vibration at 1645 cm-1 decreased, suggesting the formation of 

new bonds between clay, fibres and polymer [179, 180]. Regarding the Young's modulus, it is 

noticeable from the Figures 9 and 10 of our paper published in the Arabian Journal of 

Chemistry, that sample C2 has low mechanical properties. This material can be elastically 

deformed more easily than other tested composites. This could be attributed to the decrease of 

interface properties and fibre-matrix adhesion due to weak adsorption forces between the clay 

particles and the fibre surface, followed by the formation of a higher number of filler to filler 

bonds (clay-clay or fibre-fibre) [181, 182]. In the FTIR spectra of Sample C2, the intensity of 

the metal oxide peaks at 1030-460 cm-1 was found to be decreased in comparison to the sample 

C3, indicating lower intensity of Si-O stretching peaks, and low interaction among PLA 

polymer, fibre and clay. The creation of voids, microcraks and other similar discontinuities 

inside the interphase (Figure 11 [147]) does not primarily separate material phases (matrix-

fibre-nanofiller), but decreases the capability of transmitting and sustaining loadings, and 

reduces structural stiffness. Sample 2F (reinforcement in the sample C2) has the smallest 

diameter of all tested fibres [148] and thus the higher aspect ratio which might cause the so 

called twisting phenomenon [93], and influence the modulus and fibre/matrix adhesion. In 

general, increase of composite material stiffness is related to increase of its modulus. If the 

rigidity of reinforced components (fibres or fillers) is higher than matrix rigidity and if the fibre 

content increases up to an optimal value, the stiffness grows higher [173].    

Figure 1, presented in [148], shows stress-strain curves of composite materials and confirms 

that pure PLA material breaks at a lower strain than others, indicating its brittle nature. In 

general, synthetic polymer materials show higher elongation at break than natural fibres, which 
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leads to the increase of composite material's brittleness. In our case, tested composite materials 

show higher values of elongation at break, indicating tougher material which can withstand 

fracturing if a crack grows so long that the reinforcement cannot support the load from the 

matrix [183].      

Usually, composite materials aim to obtain better structural or functional properties compared 

to their individual composite components/phases. However, in the case when fibres are shorter 

than the critical length and randomly oriented, the resulting composite does not necessarily 

display enhanced properties [93]. This is the reason why the prediction of properties and 

product design is so difficult. Table 1 and Figure 2 from our paper [148] explain applied 

micromechanical models, experimental and predicted values for composite material's tensile 

strength and modulus. Properties such as tensile strength of the fibre (σF) and matrix (σM), 

volume fractions of the fibre (VF) and matrix (VM) and tensile modulus of fibre (EF) and matrix 

(EM) are the fundamental quantities used to predict composite properties. In this research, two 

mathematical models were investigated – Modified rule of mixtures with incorporated Cox-

Krenchel equations and the Hirsch model. Those models are most commonly used in the case 

of composites reinforced with short and randomly oriented fibres [105, 107, 184].  

 

Table 11: Experimental and predicted tensile modulus values according Hirsch model 

Fibre/ 

Composite 

 WF  VF  WM YM 

matrix 

(GPa) 

YM  

fibres  

(GPa) 

Exp YM 

composite 

(GPa) 

Predicted YM 

composite 

(GPa) 

MWR/CR 0.2 0.1667 PLA/0.8 1.40 17.868 1.65 2.01 

1F/C1 0.2 0.1660 PLA/0.8 1.40 18.533 1.89 2.03 

2F/C2 0.2 0.1665 PLA/0.8 1.40 18.212 1.17 2.02 

3F/C3 0.2 0.1665 PLA/0.8 1.40 17.926 2.60 2.02 

Where WF is weight fraction of fibres, VF is volume fraction of fibres, WM is weight fraction of matrix and YM is 

Young moduli, PLA is neat polylactide, and CR, C1, C2, C3 are composites made of PLA matrix and MWR, 1F, 

2F and 3F fibres, respectively. 

 

After micromechanical modelling, it can be assumed that the Hirsch model offers relatively 

good correlation between experimental and predicted results, especially for tensile strength. 

Predicted tensile strength values were about 10 % lower in comparison to experimental values, 

except for sample C2, where predicted values are 113.5 % higher than experimental ones. 

Predicted tensile modulus values (presented in Table 11) were about 20 % higher for sample 



Zorana Kovačević: Development of Advanced Polylactide Nanobiocomposite Reinforced with Spartium junceum L. fibres 

58 
 

CR and sample C1. Sample C2 shows 70 % higher tensile modulus value regarding its poor 

adhesion with matrix. On the contrary, sample C3 shows 20 % lower values than predicted in 

comparison to other composites. If developed composite material will be used for structural 

applications, a higher safety margin is required when natural fibres are used as the 

reinforcement of polymer based structures [150]. Estimation of final product's mechanical 

properties is an important starting point of the new material design. Our future work will include 

the establishment of more accurate design criteria using predictive models. 

4.3.2 Thermal properties of composite materials 

Three major thermoanalytical techniques (TGA, DSC and MCC) were used to investigate the 

thermal properties of SJL composite materials. Fibres' chemical modification can improve both 

mechanical and thermal properties of composite materials. Modification of SJL fibres with the 

aim of providing fire protection was conducted with MMT used in the role of flame retardant 

nanofiller and CA in the role of environmentally friendly crosslinking agent. 

Thermal degradation curves of PLA and SJL composites were showed in Figure 5 of the paper 

published in Composite B Part B: Engineering [146]. All samples show thermal stability in the 

temperature range 30 °C to 300 °C. When samples are exposed to temperature higher than 300 

°C, only MMT treated fibres could improve thermal stability regarding their residual weight 

after thermal treatment at 800 °C. Among all the tested materials (PLA, CR, C1, C2 and C3) 

the neat PLA has shown the highest initial decomposition temperature of 354 °C. Other 

materials are reinforced with natural fibres, which influence the start of decomposition and shift 

it to lower temperatures. TGA results revealed poor adhesion between polymer and fibre in 

sample C2, since all the measured temperatures up to the decomposition temperature were 

lower than in the other samples. One of the possible explanations for this phenomenon is the 

uneven nanodispersion of clay particles within SJL fibre surface or the creation of its clusters 

ranging from over 5 µm down to submicrometer scale and the increase of the number of air 

voids inside the body of material (Figure 4 in [146]). Sample C3 showed higher decomposition 

temperature at certain weight loss TD in comparison to sample C2, indicating formation of 

crosslinking caused by interaction between the CA and –OH groups of fibre cellulose or PLA 

polymer. Only samples C2 and C3 have formed the composite chars by pyrolysis at 800 °C and 

SEM analysis of these chars offered a clear view of the possible nanoclay effect, where the 

migration of nanofiller from the inner part of the technical fibre to its surface could be observed, 

thus inhibiting access to oxygen and preventing combustion process from being sustained.  
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Additionally, the energy of activation was determined for the main decomposition stage of PLA 

matrix and SJL composites. Sample C2 has the lowest thermal stability (156.59 kJ/mol) 

compared to other tested materials. For most natural fibres, activation energy of 160-170 kJ/mol 

was obtained throughout the composite processing temperature range [185], indicating fast 

decomposition of cellulose from reinforcing fibres in sample C2. In Figure 7 of the same paper 

[146], it is shown that the fitted lines are nearly parallel and show similar trend, except for C2 

sample, indicating changed reaction mechanism. This change is probably caused by poor 

interface properties and insufficient wetting of SJL fibres with PLA matrix and therefore 

induced accelerated decomposition process of the main fibre structural components [186].  

 

Glass transition temperature (Tg), melting temperature (Tm) and cold crystallization 

temperature (Tcc) were investigated by differential scanning calorimetry. During the second 

heating, the neat PLA and its composites show 3 distinct peaks (Tg, Tcc and double melting) 

presented in summarized Table 12. It can be observed that Tg, Tcc and Tm peaks shift towards 

lower temperatures with the addition of SJL fibres. Samples with a low degree of crystallinity, 

where polymer chain's ends can move more easily, show lower Tg values, characteristic for 

flexible materials [176]. Tg values were found to decrease in correlation with fibre modification 

process according to the order: PLA>CR>C1>C2. Sample C3 shows no glass transition 

temperature within the tested temperature interval. This could occur due to heavily crosslinked 

structures within the composite material or more likely due to very ununiform linkage density 

distribution that leads to hardly detactable Tg [187].  Reduction in Tg values with the addition 

of SJL fibres is an indication of the plasticizer effect. The result is the increase of polymer chain 

mobility in the interphase zone presented in the Table 7 of our published paper [147] through 

noticeable increase in elongation at break. The glass transition is a complex phenomenon related 

to many factors such as chain flexibility, molecular weight, branching, crosslinking, and 

intermolecular interaction [188, 189].  
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Table 12: DSC analysis of PLA and SJL composite materials 

Where Tg is glass transition temperature, Cp is heat capacity, Tcc is temperature of cold crystallization, ∆Hcc is 

cold crystallization enthalpy, Tm is melting temperature, ∆Hm  enthalpy of fusion, X is degree of polymer 

crystallinity, PLA is neat polylactide polymer, and CR, C1, C2, C3 are composites made of PLA and MWR, 1F, 

2F and 3F fibres, respectively. Data in brackets represent standard deviations 

 

Crystallization at lower temperatures during the heating cycle was influenced by SJL fibres, 

which act as nucleating agents that naturally lower the surface free energy barrier for nucleation 

[187, 188]. Sample C3 shows the lowest temperature of cold crystallization (Figure 16), 

indicating that the fibres modified with MMT/CA are better nucleating agents for PLA 

crystallization due to the heating cycle. This early crystallization can be explained by the 

formation of stronger hydrogen and covalent bonds between fibres and matrix and the presence 

of a transcrystalline zone form at the fibre-matrix interface [190, 191]. In general, the nucleation 

stage and the crystal growth are more complicated for the polymeric composites due to the 

possibility that fillers (fibres or nanoparticles) act as nucleating agents. 

 
Figure 16: DSC curve for neat PLA and its composites, Where PLA is neat polylactide polymer, and CR, C1, C2, 
C3 are composites made of PLA and MWR, 1F, 2F and 3F fibres, respectively. 

 

Sample Tg 
[°C] 

∆Cp 
[J/g°C] 

Tcc1 
[°C] 

∆Hcc1 
[J/g] 

Tm1 
[°C] 

Tm2 
[°C] 

∆Hm 
[J/g] 

X 
[%] 

PLA 58.06 
(0.52) 

0.63 
(0.08) 

110.31 
(0.67) 

0.62 
(0.48) 

/ 165.21 
(0.16) 

43.34 
(3.07) 

46.71 
(3.12) 

CR 51.26 
(1.38) 

0.33 
(0.08) 

107.24 
(0.43) 

17.59 
(0.34) 

156.11 
(0.21) 

163.90 
(0.47) 

27.03 
(0.89) 

10.15 
(1.32) 

C1 49.61 
(1.20) 

0.37 
(0.00) 

108.50 
(0.27) 

29.40 
(1.64) 

155.60 
(0.84) 

162.00 
(0.46) 

34.58 
(1.04) 

5.57 
(1.68) 

C2 49.50 
(0.51) 

0.38 
(0.04) 

110.18 
(0.48) 

8.85 
(0.60) 

145.22 
(0.48) 

155.00 
(0.17) 

14.25 
(0.77) 

5.81 
(1.40) 

C3 none none 100.53 
(0.90) 

9.40 
(1.77) 

150.87 
(3.23) 

158.53 
(2.70) 

23.06 
(2.61) 

14.69 
(4.65) 
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Fillers can increase the crystallization or limit the normal crystal growth in certain areas, such 

as the interphase between fillers and polymer matrix [188], depending on the interfacial 

adhesion.   

Beg et al. (2013) investigated the properties of natural fibre/PLA biocomposites. Among 

various testing methods, interfacial adhesion between chemically modified natural fibres and 

PLA was also explained by DSC. They found that neat PLA shows only one melting peak while 

its composites show double melting behaviour, confirming the presence of two different types 

of crystal. Both crystals have the same structure but with one exception – the less perfect crystal 

has a smaller lamella thickness [190]. Higher Tm is attributed to the creation of more perfect 

crystals which would usually melt at higher temperatures than the less perfect crystals [188-

190].  It can be confirmed that Sample C3 gives the best results among other tested samples 

regarding their fibre modification and the usage of CA as a coupling agent, which allows better 

adhesion of matrix and fibre and therefore better interface properties. 

Flammability properties of tested composites revealed that nanoclay treated SJL fibres, which 

serve as an reinforcement in the sample C2 and C3, affect the occurrence of lower heat release 

values (W/g) indicating much higher flammability of CR and C1 samples. The heat release rate 

plots of all samples are presented in Figure 8 of our paper [146] and the corresponding 

combustion data are summarized in Table 13, within this chapter. It could be observed that 

materials reinforced with SJL fibres show lower peak heat release rate (HRR) and total heat 

release (THR) in comparison to the neat PLA. The formation of residue in Sample C2 after 

exposure to 750 °C affects the creation of a thermal barrier [192, 193] which decreases the heat 

release of the nanoclay treated samples.    

 

Table 13: MCC data of PLA and SJL composite materials 

Samples HRR (W/g) THR (kJ/g) 

 

THC, gas (kJ/g) Yield of pyr. residue (g/g) 

PLA 475.133±22.633 17.133±0.131 17.330±0.161 0.011±0.003 

CR 388.400±24.894 14.433±0.653 15.160±0.436 0.048±0.035 

C1 395.567±10.329 14.800±0.408 15.562±0.385 0.049±0.014 

C2 280.926±16.735 13.833±0.663 14.581±1.212 0.074±0.006 

C3 341.437±6.637 14.800±0.299 15.447±0.172 0.042±0.009 

Where PLA is neat polylactide polymer, and CR, C1, C2, C3 are composites made of PLA matrix and MWR, 1F, 

2F and 3F fibres, respectively. HRR is heat release rate, THR is total heat release and THC is total heat capacity. 

Results are presented as mean value within 95 % confidence interval. 
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4.4 Biodegradability 

Due to the rise of ecological awareness, more and more members of the scientific community 

are involved in the research of biodegradable polymers which turn out to be a suitable 

replacement for nondegradable polymers [9, 194-196]. Biodegradability means the complete 

degradation of polymer in the presence of microorganisms [197]. PLA is a linear aliphatic 

thermoplastic polyester that can be made from completely renewable resources such as sugar, 

corn, potato, cane, beet, etc. and has adoptable degradability. Industrial production of PLA 

polymer is based on the ring opening polymerization of lactide monomer formed from lactide 

acid, which is produced by fermentation of renewable agricultural resources [198]. Through 

hydrolysis, it can be decomposed to lactide acid, which is subsequently decomposed to water 

and carbon dioxide by metabolic processes [199]. Degradation degree depends on the 

temperature, size and shape of the polymer and the proportion of isomers [198-200]. 

Due to the need for renewable solutions for the development of new materials, the usage of 

composite materials made of biopolymer matrices reinforced with natural fibres is increasing 

significantly. These materials are relatively cheap, have specific properties contributing to the 

neutralization of CO2, and are biodegradable. Although PLA is biodegradable, the basic 

comprehension of its enzymatic degradation related to its blending with another biodegradable 

polymer still requires better understanding [201]. 

The factors investigated through enzymatic degradation of PLA were: stereochemistry, melting 

temperatures, crystallinity, crystal structure, glass transition temperature, molecular weight and 

molecular weight distribution.  

 

So far, scientists have found [202-204] that: 

 The degradation rates of PLA decreases with an increase in crystallinity 

 Enzymatic hydrolysis of completely crystallized PLA films with restricted amorphous 

regions mainly took place through the chains in the constrained amorphous regions of 

the spherulites 

 In crystalline PLA films, the degradation of the free amorphous region was faster than 

that of the restricted regions 

 Proteinase K preferentially degraded (L)-PLA over (D)-PLA. 

Our results dealing with PLA and its composites biodegradability are published in The Hollistic 

Approach to Environment Journal and disscussed in this chapter.  
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Materials used in this experiment were composites made of PLA, SJL fibres and nanofillers. 

They were subjected to enzymatic degradation. The weights of the samples after enzymatic 

degradation in duration of three and five days are presented in Table 14.  

 

Table 14: Moisture content and weight loss percentage of PLA and its composites after enzymatic degradation, 
data in brackets represent standard deviations 

Sample Enzyme (%) ∆m72 (%) ∆m120 (%) Moisture content (%)* 

PLA 20 0.464 (0.064) 0.793 (0.247) 0.660 (0.135) 

50 0.820 (0.466) 1.433 (0.851) 

100 0.180 (0.031) 0.516 (0.057) 

CR 20 0.993(0.403) 1.368 (0.206) 1.520 (0.189) 

50 0.849 (0.425) 1.462 (0.105) 

100 1.278 (0.421) 1.248 (0.444) 

C1 20 0.078 (0.042) 0.416 (0.004) 1.580 (0.393) 

50 1.333 (0.170) 1.498 (0.150) 

100 0.800 (0.277) 0.667 (0.197) 

C2 20 9.362 (0.183) 23.518 (1.374) 1.604 (0.059) 

50 22.230 (4.997) 42.943 (3.488) 

100 42.435 (21.168) 67.660 (31.679) 

C3 20 1.171 (0.402) 1.445 (0.242) 0.791 (0.127) 

50 1.120 (0.059) 2.517 (0.872) 

100 0.705 (0.117) 1.399 (0.250) 

Where PLA is neat polylactide polymer, and CR, C1, C2, C3 are composites made of PLA and MWR, 1F, 2F and 

3F fibres, respectively. Data in brackets represent standard deviations. *Moisture content is defined as the 

percentage of water present in a material of total weight of the material determined in a standard atmosphere – 

under a relative humidity of 65 ± 2 % and a temperature of 20 ± 2 °C. 

 

Weight loss is the result of a hydrolytic cleavage of ester bond [205, 206, 207]. According to 

the weight loss measurements, it could be concluded that fibre reinforcements increased the 

degradation rate over that of neat PLA. The highest weight loss of PLA, CR, C1 and C3 samples 

after 5-day enzymatic treatment was observed when using the 50 wt.% enzyme and the results 

were 1.43 %, 1.46 %, 1.50 % and 2.52 % respectively, while sample C2 showed the highest 

weight loss of 67.66 % when using the 100 wt.% enzyme. The effect on the biodegradation rate 

of composites depends on the biodegradability of the other involved components and the nature 

of their miscibility [200]. Study of Singh et al. [208] showed that the incorporation of MMT 
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into PLA increased the biodegradation depending on the organic modifier used in the clays. It 

is most likely that degradation depends on the presence of excess –OH groups in the MMT 

[207, 208]. Those groups may accelerate the hydrolytic decomposition responsible for higher 

biodegradation of C2 and C3 samples. Along with that, higher biodegradation of C2 is caused 

by poor compatibility of PLA matrix and 2F fibre. Additionally, moisture content has a 

noticable influence on biodegradation. Sample C2 shows weaker mechanical properties in 

comparison to other composites; therefore, sample C3 seems to be the most successful for 

biodegradation.   

 
Figure 17: Linearity and polynomial regression of weight loss/time function for neat PLA and its composites when 
using 50 % of enzyme Sagvinase 16 L, Where PLA is neat polylactide polymer, and CR, C1, C2, C3 are composites 
made of PLA and MWR, 1F, 2F and 3F fibres, respectively.  

Figure 17 shows the linearity of PLA sample and polynomial regression of other tested samples 

regarding their weight loss/time function. All tested samples indicate a direct proportionality in 

data regarding trendline and R squared. According to prediction results, composite materials 

CR, C1, C2 and C3 will degrade by minimum of 90 % weight loss within 6 months of 

biodegradation treatment, more accurately within 114, 40, 8 and 36 days, respectively. PLA 

showed linear proportionality and it will degrade by minimum of 90 % weight loss within 315 

days. 

FTIR spectra of samples before and after the enzymatic degradation are presented in Figures 

18-22. FTIR spectra of PLA show narrow peak at 1753.5 cm-1, which corresponds to C=O 

stretching. Peaks at 1180 cm-1, 1129 cm-1 and 1082 cm-1 are attributed to C-O-C stretching. 
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Peaks at 957 cm-1 and 921 cm-1 are attributed to –CH bending and α crystals of polymer, 

respectively. Its descending intensity presumably corresponds to the presence of an amorphous 

region. The spectra of enzyme treated PLA spectra show a slight shift in the band characteristic 

for C=O group to higher wavenumber – from 1753 cm-1 to 1755 cm-1, which confirms PLA 

degradation [208]. Peaks at 2997 cm-1 and 2881 cm-1 present the asymmetric and symmetric 

stretching band of –CH from –CH3 groups of the side chains while their bending vibrations 

could be observed at 1454 cm-1. Peak at 1454 cm-1 has also been shifted to higher frequencies, 

which represents degradation of the sample due to the change in chemical structure during 

biodegradation. The peak at 2946 cm-1 was attributed to the stretching of –CH groups from the 

main chain of PLA polymer, while its bending vibrations appeared at 1359 cm-1 and 1383 cm-1. 

Splitting peak characterized with two wavenumbers at 1293 cm-1 and 1304 cm-1 presents the 

semi crystalline state of PLA [209]. Peaks at 870 cm-1 and 755 cm-1 are attributed to the rocking 

vibrations of CH2 from the amorphous and crystalline phase. The similar behaviour was 

observed in other tested samples. Figure 19 represents FTIR spectra of composite (CR) made 

of PLA polymer and reference (fibres without additional modification) SJL fibres before and 

after the enzymatic degradation. Broad peak at 3304 cm-1, which is characteristic for the – OH 

groups of cellulose, is visible in the spectra of material before degradation indicating presence 

of fibres on the sample surface, which might be due to inappropriate wetting of fibres with 

polymer. Peak at 1505 cm-1 (exhibits aromatic ring vibration of lignin from the natural fibres) 

is visible in the spectra of CR sample before enzymatic degradation and after a 5-day treatment 

with 20 % enzyme concentration. Degradation of samples was confirmed by shifting peaks 

from approx. 1754 cm-1 to 1756 cm-1. A similar behaviour was observed in other tested samples; 

therefore ranges from 1750 cm-1 to 1755 cm-1 and from 1454 cm-1 to 1455 cm-1, which were 

the area of interest. In Figure 9, sample C1 show carbonyl peak shifting from 1753 cm-1 to 1755 

cm-1 and methyl band shifting from 1454 cm-1 to 1455 cm-1, confirming PLA degradation. 

Figures 21 and 22 show FTIR spectra of composites reinforced with MMT treated fibres before 

and after enzymatic degradation. Higher biodegradation rate of sample C2 is primarily due to 

its poor fibre/matrix interface and unsatisfactory mechanical properties, while for sample C3, 

this is due to crosslinking of MMT with polymer and fibre which may lead to an increase of 

amorphous region, thus increasing the chance for faster degradation rate, since hydrolysis of 

PLA starts at the amorphous region [210].  
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Degradation of C2 and C3 is also confirmed by carbonyl shifting from 1752 cm-1 to 1756 cm-1 

and 1753 cm-1 to 1755 cm-1, and methyl peak shifting from 1454 cm-1 to 1455 cm-1 for both 

of samples. Additionally, biodegradation in the PLA biocomposites was evaluated by the 

carbonyl index (CI). It is expressed with the absorbance intensity ratio between the carbonyl 

and methyl group [211] and presented in Table 15. 

 

Table 125: Carbonyl index of PLA and its composites before and after enzymatic degradation with enzyme 
Savinase 16 L under following conditions: pH 9, 37 °C and during 5-day treatment 

Where PLA is neat polylactide polymer, and CR, C1, C2, C3 are composites made of PLA and MWR, 1F, 2F and 

3F fibres, respectively; 20%E, 50%E and 100%E is label for material treated with 20 %, 50 % and 100 % of 

Savinase 16 L enzyme, respectively; CI is carbonyl index. 

 

Sample Wave number cm-1 

(Carbonyl group) 

Wave number cm-1 

(Methyl group) 

CI  

PLA  1753.51 1454.64 3.37 

PLA  20%E 1755.00 1454.82 2.75 

PLA  50%E 1755.24 1455.41 2.99 

PLA  100%E 1755.88 1455.63 3.42 

CR  1754.80 1455.39 1.87 

CR  20%E 1755.69 1455.46 3.38 

CR  50%E 1755.56 1455.45 3.46 

CR  100%E 1755.87 1455.58 3.12 

C1  1753.30 1454.26 3.31 

C1  20%E 1755.65 1455.49 3.52 

C1  50%E 1755.70 1455.44 3.37 

C1  100%E 1755.54 1455.46 2.91 

C2  1752.42 1454.68 3.50 

C2  20%E 1755.70 1455.49 3.84 

C2  50%E 1756.57 1455.55 3.20 

C2  100%E 1755.14 1455.37 4.58 

C3  1753.90 1454.49 3.16 

C3  20%E 1755.83 1455.40 3.03 

C3  50%E 1755.69 1454.74 3.40 

C3  100%E 1755.79 1455.41 3.14 
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The increase in the CI is attributed to an increase in terminal carboxyl end groups due to 

enzymatic degradation [212-214]. The best results of weight loss were obtained with the 50 

wt.% enzyme, which is also partially confirmed with CI. Sample C3 showed the highest value 

of carbonyl index when treated with the 50 wt.% enzyme. The decrease in the CI of neat PLA 

confirms utilization of oxidized polymer by microorganisms [215]. 

Biodegradation reaction depends on the physicochemical properties of the tested material such 

as molecular weight, chemical composition, crystallinity and surface area, but also on the 

enzyme properties like its activity, stability, local concentration, amino acid composition and 

3-d conformation. Another important condition for satisfying rate of biodegradation is to 

maintain coresponding and optimal pH and temperature values, since they influence both the 

properties of the tested material and the enzyme [97, 216].  

4.5 Biofuels 

Since the most important role of Spartium junceum L. crop is its utilization for the bast fibre 

production, a huge disadvantage is the organic residue left after the fibre extraction, that 

represents almost 90 wt% of initial stem weight from which fibres were extracted. Nowadays, 

we are witnessing the rise of biomass energy industry since the European Commission has set 

a long-term goal to develop a competitive, resource-efficient and low carbon economy by 2050 

[217].  

Stem residues of SJL plant derived from salty water and microwave maceration were 

investigated for their potential as raw material for second-generation biofuel production. 

Examination of its energy properties consisted of determining proximate and ultimate 

properties of the biomass. The results show low moisture content (6.5 % - 7.5 %), ash content 

below 5 % and higher values of fixed carbon and volatile matter content of 13.2 % and 75 %, 

respectively. Higher heating values that were determined (17.2-18.8 MJ/kg, indicate high 

quality biomass that can be used most effectively in solid biofuel production. 

 

Katović et al. investigated the properties of SJL fibres and their associated residues after various 

extraction methods – traditional sea water retting and microwave assisted alkali retting [218]. 

The authors compared chemical composition content of SJL stem before and after the fibre 

extraction and found that chemical composition of residue after extraction depends on the 

chosen extraction method. Microwave-assisted alkali treated residues have shown increase in 

cellulose and lignin content compared to sea water retted residues for approximately 5 % and 
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14 %. Considering such increase in lignin content and the fact that after MW extraction approx. 

90 % of SJL residue remains unused, we realized the need for further investigation of possible 

usage of SJL residues as feedstock in bioenergy production. 

All the samples show significant difference in the non-combustible matter content, except fixed 

carbon values, which show that the content is not affected by the type of the applied method of 

fibre extraction. Fixed carbon (FC) represents covalently bonded carbon, whereas higher 

content of bonded carbon correlates with the higher quality of biomass [219]. 

Moisture content (MC) is important for the purpose of raw material storage [220]. Residues 

after microwave-assisted extraction show no significant difference in moisture content 

compared to samples prior to fibre extraction. It is usually advised to keep the moisture content 

in biomass within the limits of 10-15 %, since higher moisture content can cause endothermic 

reaction [221, 222]. 

Ash is an undesirable component of biomass, considering its catalytic influence on thermal 

decomposition. Higher ash amount points to higher carbon and gas concentrations. Melting 

point of biomass ash is low, so during thermal process, melted ash produces slagging, which 

prevents energy transfer and lowers combustion efficiency [219]. The obtained ash content 

(AC) of residues after different fibre extraction methods shows no significant difference. Its 

content is approx. 4.5 %, which is within the expected limits, since SJL belongs to herbaceous 

and agricultural biomass group that commonly reveals higher ash content than wood biomass, 

because of different chemical composition and higher mineral share, such as potassium, 

calcium, magnesium or phosphorus, which are ash-forming elements [23].  

The most commonly found macro-elements in biomass are calcium, potassium, magnesium and 

sodium. Table 16 presents content of such macro elements in SJL residues after fibre extraction. 

Residues after microwave fibre extraction (MWR) show lower content of calcium, potassium 

and magnesium, but higher sodium content compared to SJL residues after fibre extraction in 

salty water (SWR). Sample 0R presents SJL stem before the fibre extraction. Ca and Mg usually 

increase the ash melting point, while K decreases it. Therefore, the fuel is of better quality if it 

has a lower proportion of K and Na. Sample MWR shows the lowest content of potassium and 

highest Ca/K ratio, which is an indicator of lower slag occurrence, compared to other tested 

samples. The majority of macro element content values of MWR sample are in accordance with 

or slightly vary from the CEN/TS 14961:2005 specification for fuel quality classes. Significant 

increase in sodium content is due to the exposure of SJL stems to NaCl from salty water and 

NaOH from alkali and microwave treatment. 
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Table 16: Macro elements content in SJL residues after fibre extraction 

Sample Macro element [g/kg] 

Ca K Mg Na 

0R 3.6 ± 0.07 

3.3 ± 0.06 

3.2 ± 0.04 

13.7 ± 0.15 0.5 ± 0.03 0.2 ± 0.005 

SWR 0.7 ± 0.005 2.8 ± 0.04 8.7 ± 0.13 

MWR 0.3 ± 0.01 0.5 ± 0.19 9.9 ± 0.06 

Where 0R is SJL stem before fibre extraction, MWR is SJL residues after microwave fibre extraction, SWR is  SJL 

residues after fibre extraction in salty water. Results are presented as mean value within 95 % confidence interval. 

 

Coke content is considered a positive property of biomass, since an increase in coke content for 

residues after the microwave-assisted extraction process can be observed. The proximate 

analysis of two different biomass samples derived from different extraction methods shows that 

volatile matter (VM) content is reduced while fixed carbon (FC) increased, pointing to lower 

concentrations of light hydrocarbons like CO, CO2, H2, moisture and tars in the samples which 

underwent microwave assisted extraction of fibres [220-222]. 

By increasing carbon and hydrogen content, higher heating value (HHV) also increases because 

C and H oxidized during combustion by exothermic reactions (formation of CO2 and H2O) 

[223]. The highest heating values were obtained for residues after microwave-assisted fibre 

extraction, with HHV of 18.16 MJ/kg and related lower heating value (LHV) of 16.69 MJ/kg. 

Based on the obtained results of moisture, ash, fixed carbon, coke, volatile matter, nitrogen, 

sulphur, carbon, hydrogen and oxygen content, as well as the obtained heating values, it can be 

concluded that the residues after fibre extraction can be further utilized as raw material for solid 

biofuel production in order to achieve more efficient and sustainable production.  
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5 CONCLUSION 

This thesis gives an insight into research of possible usage of Spartium junceum L. plant as a 

raw material for fibre production and its application as reinforcement in the composite material 

manufacturing. This thesis has examined the effects of surface functionalization of SJL fibres 

on the properties of natural fibre reinforced PLA composites, including thermal and mechanical 

behavior, biodegradability and agro-waste utilization. 

• The results of the present work confirm that the extraction process aided by microwave 

energy can be successfully used to produce fibres, with properties suitable for textile and 

composite applications inter alia automotive applications. Additionaly, the fibre production 

time was significantly shortened and the energy consumption was notably lower.   

• The surface of SJL fibres was modified by alkali and nanoparticle treatment with the 

addition of environmentally friendly crosslinkers  in order to enhance fibre/polymer interface 

and to achieve better flame retardancy. The highest cellulose content was observed in SJL fibres 

modified with nanoclay and citric acid (3F) leading to the production of stronger fibres of 

improved quality.  

• Composite materials reinforced with fibres of optimum quality show tensile strength 

and modulus improvement by 135 % and 122 %, respectively, as compared to the sample C2. 

The experimental values of composite tensile strength were compared to the values predicted 

by the Hirsch model and offer a relatively good correlation, since predicted tensile strength 

values were about 10 % lower in comparison to experimental ones. 

• Biodegradability examination indicates significant biodegradation over 5-day test and 

37 °C temperature. Sample C3 show weight loss of 2.5 % after 5-day test with the 50 wt.% 

enzyme, pointing to high probability of sample degradation by a minimum of 90 % of its 

weight/volume within period of 35 days. 

• SJL residues after fibre extraction proved to be good quality biomass for solid biofuel 

production based on the obtained results of moisture, ash, fixed carbon, coke, volatile matter, 

nitrogen, sulphur, carbon, hydrogen and oxygen content, as well as the obtained heating values, 

in order to achieve more efficient and sustainable production. 

• Poverty reduction through the revitalization of SJL fibres would be a tangible outcome 

of the production of feedstock and the development of bioproducts. 
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7 ANNEX 

7.1 Comparison of Spanish Broom (Spartium junceum L.) and flax (Linum usitatissimum) 

fibre - Textile Research Journal 82 (2012) 17, p. 1786-1798 – reused with permission 

from publisher  
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Comparison of Spanish broom (Spartium
junceum L.) and flax (Linum usitatissimum)
fibre

Zorana Kovačević1, Sandra Bischof Vukušić1 and
Malgorzata Zimniewska2

Abstract

After a long break, Spanish broom gained interest as a natural, sustainable and renewable fibre for textile and technical

applications. This paper describes the characterization of Spanish broom fibres (Spartium junceum L.) in comparison to

the flax fibres (Linum usitatissimum). Spanish broom fibres were obtained by two different methods of maceration and

some of the most significant chemical and physical properties of tested fibres are reported. Scanning electron microscopy

has proven to be a useful tool for the determination of morphological characteristics of elementary and technical fibres.

Other physical-chemical properties of fibres were determined by infrared spectroscopy (FT-IR), thermogravimetric

analysis (TGA), fineness and tensile strength methods.

Keywords

Flax fibres, FT-IR, morphological analysis, SEM, Spanish broom fibres, Spartium junceum L., TGA

Introduction

The rapidly increasing environmental awareness and
growing global waste problem affected the development
concepts of sustainability and renewable materials. Over
the last ten years, the real revolution in bast fibre pro-
duction technology started. Although, bast fibres have
been grown for centuries throughout the world, their
production is much higher nowadays in order to meet
the demands of the global market and to produce recyc-
lable, renewable, ‘green’ products. Some of the most
used bast plants are: flax, hemp, kenaf, ramie, jute,
etc.1,2 Whilst flax and hemp have mostly been used as
textile raw material of cellulosic origin in the plains,3 in
coastal areas of the Mediterranean, wild Spanish broom
(Figure 1) has been used as the textile raw material since
ancient times.4–6

The habitat of Spanish broom is the Mediterranean
area of south Europe, south-west Asia and north-west
Africa.7,8 It grows in coastal areas with rugged soil and
clean air, and as such it is not exposed to pesticides like
the cotton is. It is a shrub-like plant from the family of
legumes and the only species in the genus Spartium.
Spanish broom grows 1–1.5m tall and the only old
examples grow into smaller trees of 4–5m tall and
15–20 cm thick. Spanish broom produces intensively

yellow flowers between May and July, and its legumes
mature between August and October. Its roots are deep
and it binds the soil quite well. As a legume plant, it
uses symbiosis to bind atmospheric nitrogen in the
roots’ lumps, thickening and enriching the soil.9

A production of Spanish broom fibres already
existed in Mediterranean countries, but because of
high production costs, caused by the conventional
maceration method, it has been abandoned now –
except in Italy and Romania. Since the general produc-
tion of Spanish broom fibres is negligible nowadays,
accurate statistical data of the theoretical amount of
Spanish broom fibres are not available.10

The fibre yield of wild Spanish broom plant is
approximately 5% according to our experiments while
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the fibre yield of the cultivated flax plant is 20–25%. In
general, fibre yield depends on the pretreatment process
known as maceration or degumming, as well as on the
plant cultivar and plant maturity.

Maceration of natural fibres can be easily described
as the separation of fibre from the woody part of the
plant and the removal of its non-cellulosic components
such as pectin, hemicellulose, lignin, waxes and fats.13–15

Some maceration methods e.g. DeCoDe process9,14

have shown better results in fibre yield, but in this paper
the most common maceration method of water retting
was used, as well as osmotic degumming of the flax.

With maceration, it is possible to obtain fibres of
very good quality, which were used for the ropes, bas-
kets, mats, etc., in ancient times. Today these fibres are
increasingly used in biocomposite materials, especially
for the automotive industry.16 The most recent papers
of our research group6–9,15 try to draw the attention to
this promising area of application. The purpose of this
research is to answer the question of whether the qual-
ity of Spanish broom is comparable to flax.

Experimental

Materials

Polish flax cultivar Modran (collected in Poland) and
Spanish broom (picked in the area of town Šibenik,

Croatia) were used in the study. The extraction of
fibres was conducted at the INFMP (Institute for
Natural Fibres and Medicinal Plants, Poland). Prior
to the testing, fibres were obtained from the plant
through a maceration process (Figure 2).17 Two macer-
ation methods were applied: water retting and osmotic
degumming.

In this study, technical fibres were characterized,
except within the SEM analysis where both the elemen-
tary and technical fibres were used.

Methods

Water retting. Samples were placed in a tank with water
heated to a temperature of 30.6–33�C. The Spanish
broom was retted in a tank for 20 days (480 h) and
flax for 3 days (72 h). After retting, the plants
were passed through a mechanical process (breaking,
scutching), after which fibres were obtained.

Osmotic degumming. Samples (Spanish broom and flax)
were placed in a 2000mL glass gauge filled with warm

Figure 2. Fibre processing scheme: WR_B – Spanish broom

fibres (B) obtained by water retting maceration method (WR);

WR_F – flax fibres (F) obtained by water retting maceration

method (WR); OD_B – Spanish broom fibres (B) obtained by

osmotic degumming maceration method (OD); OD_F – flax

fibres (F) obtained by osmotic degumming maceration method

(OD).

Figure 1. Spanish broom (Spartium junceum L.).
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water and placed in a tank full of water heated to a
temperature of 30�C. One end of the rubber hose was
immersed in the glass gauge and the second end was
immersed in a small plastic container. This method of
maceration uses natural physical laws such as water dif-
fusion, osmosis and osmotic pressure.17,18 Osmotic
degumming of the Spanish broom plant lasted 28 days
(672 h) and for flax 3 days (72 h), after which fibres were
obtained by mechanical processes (breaking and
scutching).

Physical properties

SEM and optical microscopy. Surface morphological ana-
lysis of the Spanish broom fibres was carried out using
a field emission scanning electron microscope, Mira,
Tescan. Samples were previously coated with gold/pal-
ladium in a sputter coater.

Cross-sectional optical micrographs of both plants
with a magnification of 20� were conducted with
Nikon Elipse E 400 microscope.

Fineness, strength and elongation. Breaking tenacity and
fineness of individual fibres were examined using the
Vibroscope and Vibrodyn devices, Lenzing
Instruments. Tension, testing speed and gauge length
values were 0.015N, 3mm/min and 5mm respectively.
Samples were conditioned at the standard temperature
(20� 2�C) and relative humidity (65� 2%). An average
of 250 tests for fibres was used in the study.

Moisture regain. The moisture regain of the fibres was
determined according to ASTM standard method

2654 using standard conditions for 24 h. Moisture sorp-
tion was calculated as a weight percentage of absolute
dry material.

Fourier transform infrared (FT-IR) spectra. Infrared spectros-
copy (FT-IR) spectra were obtained with a Perkin
Elmer Spectrum 100 FT-IR spectrometer using ATR
(attenuated total-reflection) method. All spectra were
registered from 4000 cm�1 to 380 cm�1, with a reso-
lution of 4 cm�1 and 100 scans. The background was
collected at the beginning of the measurement. In order
to normalize the infrared spectra obtained, we used the
1314 cm�1 band, assigned to CH2 rocking vibrations.

Thermal analysis

Thermogravimetry (TG). A Perkin Elmer Pyris 1 thermo-
gravimetric analyzer was used for determination of
thermal degradation on Spanish broom fibres. The
samples were crushed into small pieces before testing.
The weights ranged from 7mg to 10mg. The samples
were heated from 30�C to 800�C at the heating rate of
10�C/min in a nitrogen flow of 30mL/min. Two parallel
probes for each sample were made to achieve more
accurate results.

Results and discussion

Maceration methods

Spanish broom fibres need more time for the macer-
ation treatment. The main cause lies in the tougher
stem of Spanish broom compared to the flax.

Figure 3. Architecture of bast fibres: from stem to the fibrils.
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The main issue that has to be solved is to find a
better and quicker maceration process. Preliminary
experiments have already been performed.9

SEM and optical microscopy

Scanning electron micrograph. Spanish broom and flax
fibres are technical fibres, both consisting of a number
of elementary fibres held together by pectinous gums.

A schematic structure of the flax and Spanish broom
fibres, from stem to microfibril, is given in Figure 3.19

Technical fibres are isolated from the stem by the
maceration process and by mechanical decortication
(breaking, scutching, etc.).

The width of the elementary fibre of Spanish broom,
as shown in Figure 4(a), is similar to the width of flax
elementary fibre, shown in Figure 4(b).

The cross-section of both fibres indicates the presence
of a thick secondary cell wall (e.g. 7.32 mm for Spanish
broom and 5.41mm for flax), as shown in Figure 5.

The secondary cell wall is of extreme importance
because of its influence on the fibre properties while
its cellulose-rich fibre structure influences higher tensile
strength.20,21

Each elementary fibre can be considered as a
network of ultrafine cellulose fibrils embedded in a
matrix of hemicelluloses and lignin.22 Both of the
fibres have fibre nodes and kink bands that appear as
horizontal bands in the elementary fibres and bundles,
by which they are easily recognized. These dislocations
are regions where moisture and various chemicals can
penetrate and influence fibre properties. They also rep-
resent weak points in the fibres which can be seen after
breaking tests.22–24 The surface of tested fibres is

Figure 4. Longitudinal SEM image of (a) Spanish broom fibre, (b) flax – elementary fibre as part of the technical fibre.

Figure 5. Cross-section SEM image of (a) Spanish broom, (b) flax – elementary fibre.
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slightly irregular, which is caused by the maceration
method. In general, addition of NaOH is recommended
during the maceration process, enabling more suitable
fibre surface of samples used for the SEM analysis.

Optical micrograph. Bast fibres are produced in the outer
regions of the stem. The fibres exist in bundles of
elementary fibres in a ring encircling the core tissues.
About 40–70 bundles are in cross-sections of Spanish
broom stems, while 20–50 bundles are in cross-
sections of flax stems, with 10–40 elementary fibres
per cross-section of single bundle for both plants.
Oval-shaped bundles in flax stems indicate high qual-
ity fibre (Figure 6(b); 2), while the Spanish broom
plant has irregularly shaped bundles that indicate
poor quality (Figure 6(a); 2).

Despite of that, Spanish broom has a polygonal
cross-sectional shape of elementary fibres, as well as
thick cell walls (Figure 5.) and the possibility to provide

better quality fibres (better light reflection and
absorption).20,23–25

Fineness, strength and elongation

Figures 6 and 7 represent the graphical review of
chi-square test which is non-parametrical method for
data analyzing. Deviation of the normal distribution
can be assessed by the mentioned analyzing method.
This test was applied for fineness
measurements.23,24,28,29

The technical fibres obtained by osmotic degumming
behave in a normal distribution, as shown in
Figures 7(a) and 7(b), which means that empirical
values are pretty similar to theoretical values
(p� 0.05; the p-value is the number that represents
the probability of obtaining a test statistic). The most
common fineness of the Spanish broom technical fibres
is in the category from 40 dtex to 45 dtex (18% of

Figure 7. Frequency of fineness in 250 measurements of (a) Spanish broom fibres (B) obtained by osmotic degumming (OD), (b) flax

fibres (F) obtained by osmotic degumming (OD).

Figure 6. Cross-section of Spanish broom (a) and flax (b) plant: 1, xylem; 2, sclerenchyma (bast fibres); 3, phloem; 4, epidermis.
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all fibres) while for the flax fibres that category is from
45 dtex to 50 dtex (14%).

Technical fibre fineness depends on the shape and
length of elementary fibres, their number in the fibre
bundle to be measured and the processing method.29

Our results clearly support this statement. Upon the
treatment of osmotic degumming the mean results of
Spanish broom and flax fibres fineness are within the
range 40.97 dtex (Spanish broom) to 41.83 dtex (flax)
causing higher quality in comparison to water retting.

Technical fibres obtained by water retting as shown
in Figures 8(a) and 8(b) are coarser. The most common
fineness is in the category from 30 dtex to 35 dtex (16%)

for Spanish broom and 35 dtex to 40 dtex (12%) for flax
fibres. The average value for fineness is 41.17 dtex for
Spanish broom and 47.83 dtex for flax fibres. The
decreased fineness value of the fibre after osmotic
degumming is attributed to the cellulose molecules in
the fibre that are loosely held after lignin removal.

The stress-strain curves for the Spanish broom and
flax fibres are shown in Figures 9 and 10. Elongation at
break of the fibres is the elongation of a test specimen
produced by the breaking force, expressed as a percent-
age of the initial gauge length.23,29,30 Breaking elong-
ation of the Spanish broom fibres obtained by the
osmotic degumming method of maceration (5.0%) is

Figure 9. Stress-strain curves for (a) Spanish broom fibres (B) obtained by osmotic degumming (OD), (b) flax fibres (F) obtained by

osmotic degumming (OD).

Figure 8. Frequency of fineness in 250 measurements of (a) Spanish broom fibres (B) obtained by water retting (WR), (b) flax fibres

(F) obtained by water retting (WR).
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higher than elongation of the other tested fibres, imply-
ing the decreased toughness of the Spanish broom
fibres is obtained by osmotic degumming. The mean
value for the breaking elongation of the fibres varied
among tested fibres from 3.6% to 5.0% in the osmotic
degumming method of maceration, and 3.5% to 3.6%
in the water retting method of maceration. Flax fibres
exhibited better uniformity of breaking elongation as
shown in Figures 9(b) and 10(b), which is also evident
from variation coefficient. Flax fibres show a coefficient
of 28.14% after the water retting and 30.01% after the

osmotic degumming while Spanish broom has a coeffi-
cient of variation of 31.01% and 32.75%, respectively.
One of the reasons causing the higher coefficient of
variation of Spanish broom fibres compared to flax, is
the choice of the conventional maceration method.9

Factorial analysis ANOVA was used during the
result processing after the breaking tenacity determin-
ation as given in Table 1.23,24,28,29 According to the
p-value, a significant difference is established between
the breaking tenacity of the tested fibres considering the
type of plant and applied method of maceration.

Figure 10. Stress-strain curves for (a) Spanish broom fibres (B) obtained by water retting (WR), (b) flax fibres (F) obtained by water

retting (WR).

Table 1. ANOVA test of significance for Spanish broom and flax fibres tenacity

Effect
Univariate tests of significance for tenacity (cN/tex) sigma-restricted parameterization

Effective hypothesis decomposition

SSd Dfe MSf Fg Ph

Intercept 2225691 1 2225691 8254.684 0.000000

WR_ODa 47 1 47 0.175 0.675867

Plantb 13987 1 13987 51.874 0.000000

WR_OD*Plantc 6551 1 6551 24.297 0.000001

Error 268549 996 270

aMaceration methods (WR-water retting; OD-osmotic degumming).
bPlant (Spanish broom or flax).
cMaceration method and plant species together.
dSum of squares.
eDegrees of freedom.
fMean square.
gEmpirical F ratio (MS between groups/MS within groups).
hP-value (If p� 0.05 there is no statistically significant difference between the arithmetic mean of the samples).
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Since p� 0.05 it can be concluded that the macer-
ation method has no significant influence on tenacity as
shown in Figure 11.

Figure 11 shows that there are no significant differ-
ences in the tenacity of selected fibres. Error bars in the
graph refer to relative standard deviation (coefficient of
variation). Coefficient of variation is within the usual
range of the natural fibres. Osmotic degumming created
slightly better results in the case of the Spanish broom
(B) treatment in comparison with the water retting
(WR) method.

Moisture regain

Bast fibre water interaction can be explained as a com-
petition of hydrogen-bond formation between hydroxyl
groups of the polymer (mainly cellulose) and between
the polymer and a water molecule or a water cluster.
The water penetrates inside the fibre in the form of
vapour or water in liquid state. It breaks the secondary
interactions between cellulose macromolecules and is
adsorbed into the fibre by hydrogen bonds, which
causes a swelling of the fibres.31–33 Free hydroxyl
groups at the fibre amorphous regions and at crystal-
lites’ surfaces are responsible for the moisture sorption.
The sorption of water vapour starts with the formation

of a monolayer, where one molecule of water is bonded
to each accessible hydroxyl group and continues with
the formation of a multilayer of progressively increas-
ing thickness. Therefore, moisture sorption values yield
information on the extent of areas accessible to water
vapour within a fibre. Changes in moisture sorption of
fibres reflect changes in chemical composition, crystal-
linity and in pore structure.34

The moisture regains of the tested fibres were in the
range 7.14% to 7.82% as given in Table 2. Flax fibres
have a little higher moisture regain which is probably
due to the difference in the composition of the fibres.
The osmotic degumming method of maceration
increased the moisture sorption of tested fibres which
is due to the lignin removal.

FT-IR spectra

Figures 12(a) and 12(b) show the IR spectra of Spanish
broom and flax fibre obtained by different methods of
maceration.

Bast fibres are usually characterized by several
absorption bands (Table 3): one from 3000 cm�1 to
3700 cm�1 that represents free OH groups and intra-
and intermolecular hydrogen bonds, and two narrower
bands at 2850 cm�1 and 2917 cm�1–2919 cm�1 which

Figure 11. Mean value of breaking tenacity for different maceration types.

Table 2. Moisture regain of tested fibres under 65% of relative humidity

OD_B OD_F WR_B WR_F

Sample description Spanish broom

fibres obtained by

osmotic degumming

Flax fibres obtained

by osmotic degumming

Spanish broom fibres

obtained by water retting

Flax fibres obtained

by water retting

Moisture regain (%) 7.47 7.82 7.14 7.63
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are attributed to the CH2 and CH groups of pectin, fats
and waxes.35,36,37

Pectins are characterized by several bands:
1731 cm�1–1734 cm�1 is characteristic of the free
COOH groups of polygalacturonic acid, and those at

1426 cm�1 and 1615 cm�1 are of symmetrical and asym-
metrical oscillations of ionized carboxyl groups
respectively.30,38,39

Absorption bands at 1731 cm�1–1734 cm�1,
2917 cm�1–2919 cm�1 and 2850 cm�1 can be observed

Figure 12. (a) FT-IR spectra of Spanish broom (B) and flax (F) fibres obtained by osmotic degumming (OD), (b) FT-IR spectra of

Spanish broom (B) and flax (F) fibres obtained by water retting (WR).

Table 3. Main infrared transition for Spanish broom and flax fibres

Wavenumber (cm�1) Vibration Sources

3200–3400 OH stretching Cellulose, hemicellulose

2917–2919, 2850 C–H symmetrical stretching Cellulose, hemicellulose

1731–1734 C¼O stretching vibration Pectin, waxes

1635 OH bending of absorbed water Water

1515 C¼C aromatic symmetrical stretching Lignin

1426 HCH and OCH in-plane bending vibration Cellulose

1368 In-the -plane CH bending Cellulose, hemicellulose

1313 CH2 rocking vibration Cellulose

1241–1245 C¼O and G ring stretching Lignin

1202 C–O–C symmetric stretching Cellulose, hemicellulose

1155 C–O–C asymmetrical stretching Cellulose, hemicellulose

1047,1025,1000 C–C, C–OH, C–H ring and side group vibrations Cellulose, hemicellulose

895 COC, CCO and CCH deformation and stretching Cellulose

660 C–OH out-of-plane bending Cellulose
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in the spectra of all fibres, but they are less intensive in
the Spanish broom spectra pointing to the minor
amount of pectins, fats or waxes. It should be noted
that CH2 and CH groups of the fats and waxes could
also contribute to the same bands.

According to the literature,37 lignin is characterized
by absorption bands at 1600 cm�1, 1515 cm�1,
1241 cm�1–1245 cm�1 and 820 cm�1–850 cm�1. Peaks
at 1515 cm�1 and 1241 cm�1–1245 cm�1 can be seen in
the spectra of the Spanish broom and only as the shoul-
der in the spectra of flax. In the area of 1600 cm�1, no
clear band was observed, nor at 820 cm�1–850 cm�1,
which suggests that there is still a certain amount of
fats and pectins in the fibres. Removing fats and pectins
leads to the decrease in intensity of peaks at 2850 cm�1

and 2917 cm�1–2919 cm�1 and probably to a more sym-
metrical band at 2917 cm�1–2919 cm�1, which is related
to cellulose.

In this case it was impossible to remove all pectins
because they are present not only in the wall of elem-
entary fibres, but also in the interfibre bands, so conse-
quently a more intensive treatment of fibres is required
to obtain total pectin removal.

IR spectroscopy is very helpful in the determination
of the index of crystallinity (Ic) of cellulose.

25,36,37 The
index is determined as a ratio of intensities of absorp-
tion bands at 1368 cm�1 and 2917 cm�1.

Ic ¼ I1368=I2917 ð1Þ

Table 4. presents the index of crystallinity for
tested fibres that were calculated using IR spectra and
equation 1.

According to the data presented in Table 4. the
crystallinity index of fibres is decreased after the water
retting maceration method which indicates that the cel-
lulose crystals are better oriented after osmotic degum-
ming.36,37,40,41 Results clearly indicate that the cellulose
crystals are better oriented in Spanish broom fibres.

The percentage of crystallinity of Spanish broom
and flax fibres is also influenced by the moisture in
the sample, and fibres with higher moisture contents,
as given in Table 2, have been reported to have a lower
percentage of crystallinity. The lower percentage of
crystallinity of the tested fibres is caused by the lower
amounts of lignin and hemicellulose.

TG analysis

Thermogravimetry is one of the most widely used tech-
niques to monitor the composition and structural
dependence on the thermal degradation of natural cel-
lulose fibre. Lignocellulosic fibres are constituted by
three main components: hemicellulose (20–40%), cellu-
lose (40–60%) and lignin (10–25%), and known as a
very complex structure. These components are not ther-
mally stable and tend to degrade at an early stage of
heating. Further processing of a composite requires
thermal stability information for materials selection
and process operation.42,43

The thermogravimetric analyses of fibres show
distinct processes of weight loss occurring at different
temperatures.44 The first process of weight loss of
the Spanish broom and flax fibres is attributed to the
thermal degradation of pectin, lignin and hemicellulose.
The next weight loss is associated to decomposition of
the a-cellulose present in the fibres. The thermogravi-
metric analysis (TG) of the fibres in nitrogen atmos-
phere is shown in Figure 13. The TG measurement
gives information about the composition and thermal
stability of fibres.40 The curves can be divided into three
different regions. For the temperature below 200�C
(i.e. the first stage), the slight decay of the weight is
attributed to water loss in the form of absorbed mois-
ture.45 In this stage, the weight loss of the tested mater-
ial is less than 10%. The onset of degradation
temperatures for tested fibres for the second stage of
degradation in N2 were around 200�C. This implies that
the fibres are quite stable up to 200�C, in nitrogen.
When the temperature is between 200�C and 400�C
(the second stage), a significant loss of weight is
observed, stemming from the thermal decomposition
of hemicellulose, cellulose and lignin. In this stage,
the weight of the tested materials has been reduced
from 65% to 85%. When the temperature is higher
than 400�C (third stage), the weight loss is not as sig-
nificant as the previous period (ca. 12%), mainly as a
consequence of thermal decomposition of other heavy
components.46 In this stage, it can be seen that fibres
after water retting still show a certain percentage of
residue (�10%) due to charring at 800�C, while fibres
obtained by the osmotic degumming method of

Table 4. Index of crystallinity for tested fibres

OD_B OD_F WR_B WR_F

Sample description Spanish broom fibres

obtained by osmotic

degumming

Flax fibres obtained

by osmotic degumming

Spanish broom fibres

obtained by water

retting

Flax fibres obtained

by water retting

Index of crystallinity (Ic) 0.77 0.57 0.68 0.52
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maceration show less than 5% of residue at the same
temperature.

Conclusions

Many well known lignocellulosic fibres such as flax,
jute, ramie, sisal, hemp, coir have been studied and
well documented, but there are a few vegetable fibres
which still remain unutilized and are going as weed
species. One of them is Spanish broom fibre.

The main goal of this paper was to answer the ques-
tion of whether the quality of Spanish broom is com-
parable to flax. After we have tested the most important
properties of two selected technical fibres we made sev-
eral conclusions:

. Surface morphological properties of elementary
fibres, which are part of technical fibres are very
similar. Both fibres have dislocations and surface
irregularities, which are the consequence of macer-
ation methods.

. Polygonal cross-sectional shape of elementary fibres,
as well as the thick cell wall, provides good quality of
technical fibres.

. Spanish broom technical fibres are finer than flax
fibres, especially the ones obtained by osmotic
degumming.

. Elongation of both fibres is very similar with the
exception of Spanish broom fibres obtained by
osmotic degumming. These fibres show higher elong-
ation than the others and accordingly suggests a
decreased rigidity of the same fibres.

. Flax fibres obtained by water retting show higher
tensile strength than the others, but it is not signifi-
cantly different in comparison to other fibres. It is

clear that Spanish broom fibres after osmotic
degumming treatment show better results of break-
ing tenacity than after the water retting. Their ten-
acity is still very similar to the flax fibre tenacity.

. Spanish broom fibres have lower moisture regain
than flax fibres and after osmotic degumming, both
fibres show higher moisture regain than after water
retting maceration.

. FT-IR spectra of tested fibres demonstrated that
Spanish broom has lower amount of pectins and
waxes, but higher amount of lignin, than flax
fibres. The crystallinity index of cellulose showed
better crystal orientation in Spanish broom fibres
obtained by osmotic degumming method of macer-
ation. It is important to note that the crystallinity
index is used to indicate the order of crystallinity
rather than the absolute crystallinity of crystalline
regions.

. TG analysis shows better thermal stability of
Spanish broom fibres compared to the flax fibres.
Decomposition of Spanish broom starts at 300�C,
in comparison to flax fibres when decomposition
starts already at 250�C. This confirms the better suit-
ability of Spanish broom for the production of com-
posite materials and the possibility of applying for
larger scope of thermoplastic materials.

The overall conclusion is that fibres obtained from
Spanish broom have comparable properties to the flax
fibres and they could be suitable for usage in technical
textiles, especially for the production of polymeric com-
posite materials. Further work should be focused on
the development of processing and spinning technology
of Spanish broom fibres for ensuring diversity of their
application.

Figure 13. TGA curves of tested fibres.
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a b s t r a c t

Biocomposites were prepared by reinforcing polylactic acid (PLA) with randomly oriented, short Spar-
tium junceum L. fibres. Prior to the composite production, the fibres were treated with montmorillonite
nanoclay (MMT) in order to increase biocomposites resistance to the fire. Characterizations of the bio-
composites in the presence and absence of MMT and Citric acid (CA) were performed by Thermogra-
vimetric Analysis (TGA) and Microscale Combustion Calorimetry (MCC). The results indicated that
biocomposites reinforced with fibres modified with MMT enhanced some of its thermal properties.
Degradation level of residual fibres (char) after the TGA treatment at 800 �C was observed by Scanning
Electron Microscope (SEM). The work provided us with the idea of using MMT in the presence of CA as a
crosslinker in biocomposites for possible applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of natural fibre reinforced composites has spread
recently due to their numerous advantages, like easy processing,
low cost, contribution to the improvement of final material prop-
erties, its biodegradability and renewability [1]. The plant fibres
used as a reinforcing agent rapidly improves mechanical, thermal
and other properties of the composite [2,3]. They are used in
different outdoor and indoor applications, like decking, fencing,
docks, landscaping, building and construction and automobile in-
dustry as well [4].

One of the most common natural fibres used in biocomposites
are bast fibres, such as flax, hemp, jute or Spartium junceum L. S.
junceum L. is a native plant used for obtaining fibres of exceptional
strength. It growsmostly in theMediterranean countries, so we can
find it at Croatian islands and inland Dalmatia. Throughout history,
S. junceum L. has had awide range of applications (perfume and dye
production from the flowers, baskets from the stems and textile
materials from the fibres) [5]. As the fibres still remain main
product, new applications have added significant value today to

their production. The fibres belong to the group of bast fibres, with
properties similar to flax fibres and are mostly used in the pro-
duction of technical textiles [6]. The fibres cover a wide range of
applications, especially in the automotive industry, specifically in
the development of car interiors (carpets, trims on the inside door,
cover for the spare wheel, etc.) [7]. Transportation vehicles contain
different type of products based on plastic, textiles or foams in
order to improve fuel efficiency, reduce vehicle weight or enhance
shock-absorbing properties [8].

Since the application of natural fibre-reinforced polymer com-
posites generally has a fire risk scenario in the background, it is
necessary to provide some kind of fire protection for such com-
posites, so that the fibre/polymeric material does not contribute to
the additional flame spread or damage. Therefore, flame retardants
are incorporated into the composite system, as they help to reduce
considerably fire risk in transport. Flame retardants act both by
reducing the likelihood of a fire starting and by slowing the
development of the fire, reducing smoke and heat release, thereby
giving passengers more time to escape [9,10].

Furthermore, the application of nanotechnology in biocomposite
production has exhibited promising potential in the development of
next generation material for structural applications [11]. Polymer-
layered silicate nanocomposites containing small amounts of
inorganic nano phase, have exhibited superior properties like
modulus, strength, thermal stability and flammability resistance, as
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compared to those of pure polymers. The unique properties are due
to the nanometric size effect. Among all the potential nano-
composite technologies, montmorrilonite clay is most commonly
used layered silicate for the preparation of nanocomposites [12,13].

In the work presented here, we combined PLA as a matrix, S.
junceum L. fibres as a reinforcement and montmorrilonite clay
(MMT) as a nanofiller, with the aim of investigating thermal
properties of such biocomposites.

2. Experimental

2.1. Materials and methods

Materials and modification treatments used are presented in
Fig. 1.

3. Characterization

Methods and devices for material characterization used are
presented in Table 1.

3.1. Theoretical background

The first set of experiment regarding thermogravimetry was
used to evaluate thermal decomposition temperature of pure PLA

and S. junceum L. reinforced composites. The percent weight loss
and derivative weight loss were plotted against temperature, in
order to evaluate the onset and maximum degradation tempera-
tures of the pure PLA and its biocomposites respectively.

The second set of experiments was aimed at establishing the
activation energies of the thermal degradation of PLA and its
composites. Many studies of thermogravimetric data have been
used until now to determine kinetic parameters using different
kinetic models, such as Ozawa, Flynn and Wall, Friedman, Coats-
Redfern, Kissinger, Broido, Horowitz and Metzger, etc. [14e17]. In
our work, the energy of activation was calculated employing the
integral method of Broido model [16,18]. The equation used for the
calculation of activation energy (Ea) is:

ln ln
�
1
Y

�
¼

��Ea
R

�
$

�
1
T

�
þ const: (1)

Y ¼
�
Wt �Wf

�
�
Wi �Wf

� (2)

where: Wt e weight anytime t; Wf e final weight; Wi e initial
weight: R e gas constant 8.314 JK�1 mol�1; T e temperature in K.

By plotting lnln (1/Y) against 1/T at constant heating rate, Ea/R
was obtained from the slope of the line.

Fig. 1. Applied materials and modification treatments.
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4. Results and discussion

4.1. S. junceum L. fibre properties

S. junceum L. (SJL) fibres belong to the group of bast fibres pro-
duced in the outer part of SJL stem. Its technical fibres come in

bundles of a number of elementary fibres held together by pecti-
nous gums. Each elementary fibre can be considered as a network
of ultrafine cellulose fibrils embedded in a matrix of hemicellulose
and lignin [5,6,19]. The SJL elementary fibre is about 18.0 mm wide
and its cross section indicates the presence of a thick secondary cell
wall (7.32 mm). The secondary cell wall is of extreme importance,

Table 1
Methods and devices for material characterization.

Characterization methods/device Samples/technique Purpose

Morphology and structure/FE-SEM
Mira (Tescan)

� SEM microscope was operated at 20 kV and at
various magnification levels

� samples were coated with Au/Pd in order
to increase their electrical conductivity

� Testing fibres and composite samples in order
to investigate their structure and morphology

Thermogravimetry/Pyris 1
(Perkin Elmer)

� samples were heated from 30 �C to 800 �C at the heating
rate of 10 �C/min in a nitrogen flow of 30 mL/min

� two parallel probes for each sample were made

� Testing composite samples in order to evaluate
their thermal decomposition temperature and to
establish the activation energies of thermal degradation

Microscale combustion
calorimetry/MCC-2 (Govmark)

� measurement was performed in three replicates
according to ASTM D7309

� Testing composite samples in order to investigate
the heat of combustion of the gases evolved during
controlled heating of the samples

Fig. 2. Scanning electron micrographs of the fibre reinforced composites, where: a) the reference fibre (R); b) the NaOH-treated fibre (1); c) the fibre treated with MMT (2); d) the
fibre treated with MMT and CA (3).
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because of its influence on fibre properties while its cellulose-rich
fibre structure offers higher tensile strength [20,21]. Because of
the polygonal cross-sectional shape and thick cell wall of its fibres,
SJL provides better quality fibres (better light reflection and ab-
sorption) [20,22e24]. SJL fibres have fibre nodes and kink bands
that appear as horizontal bands in the elementary fibres and
bundles and such dislocations are regions where moisture and
various chemicals can penetrate the fibre and influence its

properties [22e24]. Adding NaOH and nanoclay into fibre structure,
the improvement of thermal properties can be influenced. Alkaline
treatment dissolves lignin phase, suggesting increment of crystal-
line phase and enhancement of fibre hydrophobicity, as the ten-
dency of water molecules held by lignin and hemicelluloses are
reduced. A chemical treatment of bast fibres with NaOH leads to
fibrillation and thereby increases the effective surface area contact
to the matrix, if such fibres are used as reinforcement in composite
materials. Due to the increase in the effective surface contact area,
there is a possibility for improvement in the composite properties
[25e28]. The increase in thermal stability of the fibres modified
with nanoclay is attributed to the hindered diffusion of volatile
decomposition products within it, or it can be due to physico-
chemical adsorption of the volatile degradation products on the
silicate surface. The volatilization of the degraded products origi-
nated by CeC bond scission in the composites is delayed by
winding path provided by the silicate layers [12].

In general, the implementation of flame retardant filler (MMT)
into flammable materials, such as natural fibre reinforced com-
posites, improves fire behaviour of the sample. Nanoclays are the
most commonly used flame retardant fillers. MMT clays consist of
alumino-silicate clay nanolayers which are separated from each

Fig. 3. Scanning electron micrographs of tensile fracture surface of the composites, where: a) fractured surface of the CR composite; b) fractured surface of the C1 composite; c)
fractured surface of the C2 composite; d) fractured surface of the C3 composite.

Table 2
Mechanical properties of tested biocomposites.

Sample Strength (MPa) Modulus (GPa) Elongation at break (%)

PLAa 17.68 (1.42) 1.40 (0.52) 5.15 (1.06)
CRb 41.87 (3.09) 1.65 (0.50) 7.07 (0.86)
C1c 42.65 (2.67) 1.89 (0.14) 5.80 (0.69)
C2d 19.81 (1.64) 1.17 (0.14) 5.68 (1.26)
C3e 46.67 (3.29) 2.60 (0.20) 7.40 (0.53)

a Pure PLA polymer.
b Biocomposite reinforced with the reference fibres.
c Biocomposite reinforced with the NaOH-treated fibres.
d Biocomposite reinforced with the MMT-treated fibres.
e Biocomposite reinforced with the MMT- and CA-treated fibres.
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other by an interlayer distance, where exchangeable ions exist,
causing neutralization of the charge between these layers. The
particle size is themain factorwhich influences its efficiency, due to
the large surface area of the nanoparticle. The increase in me-
chanical properties can be an indication of nanodispersion, which
leads to more homogeneity between the fibre and the clay, thus
inhibiting access to oxygen and preventing combustion process
from being sustained. Nanocomposite is a new product able to
create high flame retardancy while simultaneously withstanding
high loads [29e31].

4.2. Nanoclay pre-treatment and its influence on the bonding
interface of Spartium and PLA composites

Nowadays, fibre modifications provide a new way to overcome
the possible limitations in composite production. Modifications are
used to enhance the compatibility between the hydrophilic fibre
and hydrophobic matrix in a natural fibre reinforced composite.
Properties of composites based on natural fibres are strongly
influenced by the interface adhesion between the fibres and the
polymer matrix.

The bond interface between the fibre and its surroundingmatrix
is an important factor because it determines thermal properties of
natural fibre reinforced composites. However, a number of pub-
lished papers report on possible chemical treatments which might
improve the matrix-fibre interfacial adhesion [32e36].

SEM micrographs of S. junceum L. reference and modified fibres
and fractured surface of its composites without clay and with it are
presented in Fig. 2aed) and Fig. 3aed) respectively. The surface of
the R fibre (2 a) was smooth and regular in comparison to the
surface of the fibre 1 (2 b), where roughness at the surface was a
little bit increased by additional treatment of the technical fibre
with NaOH. Fig. 2c and d show fibres treated with MMT and MMT/
CA respectively. The results from scanning electron micrographs
indicated that in Fig. 2c nanoclay existed in clusters ranging from
over 2 mm down to submicrometer scale, while in Fig. 2d the
clusters ranging from over 5 down to submicrometer scale

Fig. 4. Dino-Lite digital microscope images at 50� magnification presenting voids on the surface of: a) C2 composite; b) C3 composite.

Fig. 5. TGA curves of pure PLA and Spartium junceum L. reinforced composites.

Table 3
Thermal properties of PLA and its biocomposites.

PLAa CRb C1c C2d C3e

Ti [�C] 354.1 352.4 350.9 328.0 350.5
Tm [�C] 379.0 374.5 374.8 364.8 372.0
TD20 [�C] 358.3 357.2 355.0 333.2 356.3
TD40 [�C] 368.8 368.2 366.5 350.2 367.0
TD60 [�C] 376.5 375.6 374.8 361.9 374.6
TD80 [�C] 383.2 384.2 383.1 373.4 384.0
RW [%] at 800 �C 0.0 0.0 0.0 4.9 2.9

a Pure PLA polymer.
b Biocomposite reinforced with the reference fibres.
c Biocomposite reinforced with the NaOH-treated fibres.
d Biocomposite reinforced with the MMT-treated fibres.
e Biocomposite reinforced with the MMT- and CA-treated fibres.
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indicated the incorporation of crosslinker (CA) as well. Fibre matrix
debonding and fibre pull-out were more evident in the composite
CR than in C1 (Fig. 3a and b), indicating that the interfacial adhesion
between thematrix and reference fibrewas lower. It was supported
by lower mechanical properties, in comparison with the C1 me-
chanical properties (Table 2 [37]). Improved thermal properties in

the C3 composite may be due to fibre morphology change. How-
ever, on adding MMT into the composites (C2), the fractured sur-
face of the composite (Fig. 3c) was found to be very brittle and full
fibre/matrix debonding was observed, indicating reduced me-
chanical properties of the C2, in comparison with the other tested
composites. The C3 composite showed smoother fractured surface

Fig. 6. SEM micrographs of chars after TGA of: a) CR composite; b) C1 composite; c) C2 composite; d) C3 composite.

Fig. 7. Broido plot of ln ln (1/Y) against 1000/T [K] the slope of which is related to the activation energy [kJ/mol].
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(Fig. 3d), whichmight be due to the fact that the combination of the
MMT and CA particles increased the interaction with PLA matrix,
which resulted in less pulled-out fibres from the fractured surface,
in comparison with the CR, C1 and C2 composites. The overall re-
sults indicated that introducing nanoclay and crosslinker to the S.
junceum L. fibre/PLA composites improved their thermal properties,
confirming the synergistic effects of the fibre and clay in the
composites. Therefore, improved thermal properties of the com-
posite materials reinforced with fibres treated only with MMT was
not expected, due to the increase of the number of air voids (Fig. 4)
and less stiff structure, in comparison with the MMT/CA modified
fibres.

4.3. Nanoclay pre-treatment and its influence on the thermal
properties of Spartium and PLA composites

The influence of MMTandMMT/CA on the thermal properties of
the biocomposites was investigated by TGA as shown in Fig. 5.

The analysis of higher temperature (higher than 300 �C)
decomposition of biocomposites showed improved thermal sta-
bility for the MMT treated fibres reinforced composites, regarding
their residual weight after thermal treatment at 800 �C. The
improvement could be attributed to the presence of clays in the
treated fibres. Table 3 (derived from Fig. 5) shows the initial
decomposition temperature (Ti), maximum pyrolysis temperature
(Tm), decomposition temperature (TD) at different weight loss and
residual weight (RW) of the composites. Ti decreased from 354 �C
(PLA) to 328 �C (C2) and this behaviour could be attributed to the
material processing [32,38]. The TD values of the crosslinked MMT
composite (C3) were higher than for the uncrosslinked MMT
composite (C2). This might be due to the formation of crosslinking
caused by the interaction between the CA and hydroxyl groups of

cellulose or polymer. The MMT treated composites showed an
additional increase in RW values over MMT untreated samples.

The composite chars formed from the MMT treated fibres,
characterized upon TGA, appeared to be very different compared to
the untreated ones. These chars obtained from the MMT treated
composites (Fig. 6c) were quite firm, while the samples without the
FR treatment were completely damaged. The sample C2 (Fig. 6c)
had more firm and intact surface compared to the sample C3
(Fig. 6d) which showed partially damaged surface. It was the reason
why the sample C2 had higher residual weight after thermal
treatment than C3. Applied magnification of 5 kx offered a clear
view of possible nanoclay effect, where the migration of nanofiller
from the inner part of the fibre to the surface (Fig. 6c and d), after
thermal treatment at 800 �C, could be observed.

The activation energy of PLA reinforced S. junceum L. bio-
composites study was obtained using constant heating rate [16,18].
The activation energy of thermal degradation was calculated
through Broidomethod for all the tested composites. Fig. 7 presents
the linear plots for pure PLA, CR, C1, C2 and C3 composites, while
average activation energies measured in the temperature range
from 340 to 400 �C were calculated from the slope of these curves,
as shown in Table 4, together with the R2 values for the same lines.
The temperature range from 340 to 400 �C was chosen as it pre-
sented the second stage and the fastest step of degradation.
Although the reaction mechanism of all the tested composites was
similar, according the plotted lines, the activation energy showed
lower thermal stability of the C2 composite (156.59 kJ/mol),
compared to other tested composites.

Microscale combustion calorimetry (MCC) is a proper test for
the efficacy of flame retardant in polymers from just a few milli-
grams sample. The test method is a thermal analysis method that
improves upon previous methods by directly measuring the heat of
combustion of the gases evolved during controlled heating of the
samples [39e41]. According to the MCC results, the heat release
rate (HRR) curves of PLA composites reinforced with different
treated fibres of S. junceum L. and the corresponding combustion
data are presented in Fig. 8 and Table 5. Lower heat release values
(W/g) were obtained in the case of composites reinforced with the
MMT treated fibres (C2 and C3) demonstrating much higher
flammability than reference composite and the composite treated
with NaOH (e. g. CR and C1). Meanwhile, the total heat release (kJ/g)
decreased in Spartium reinforced polymer composites, compared
to the pure PLA, the highest reduction being 20% when the fibres
modified with MMT were incorporated in the composite (C2). The
C2 composites exhibited a tendency of earlier start of the decom-
position process (at approx. 374 �C) in comparison with the C3
composites (approx. 387 �C) because of the low initial thermal

Table 4
Kinetic parameters of PLA and its composites by Broido method.

Sample Activation energy, Ea [kJ/mol] R2

PLAa 268.67 0.9990
CRb 247.56 0.9942
C1c 224.16 0.9961
C2d 156.59 0.9971
C3e 222.86 0.9661

a Pure PLA polymer.
b Biocomposite reinforced with the reference fibres.
c Biocomposite reinforced with the NaOH-treated fibres.
d Biocomposite reinforced with the MMT-treated fibres.
e Biocomposite reinforced with the MMT- and CA-treated fibres.

Fig. 8. HRR curves of the PLA composites reinforced with differently treated fibres of Spartium junceum L..
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stability of the C2 composites. All the results presented above show
that the composites reinforced with S. junceum L. fibres can
improve the flame retardancy of pure PLA polymer.

5. Conclusion

The effect of nanoclay and crosslinking agent citric acid on the
thermal properties of PLA biocomposites was studied. Having in
mind that CA is known as an eco friendly crosslinker, with a positive
impact on the FR properties of cellulose fibres, better thermal
properties of tested biocomposite were expected.

The incorporation of CA improved the thermal properties of the
MMT composites via the interaction of the carboxylic group of the
crosslinker with the hydroxyl group of nanoclay and S. junceum L.,
although the overall results showed a decrease in thermal stability,
which may be due to improper amount of incorporated nanoclay,
resulting in higher number of air voids in the biocomposite.
Therefore, it could be conclude that thermal stability of the MMT
modified biocomposites increased on the addition of CA as a
crosslinking agent. However, the type of the method used to pro-
duce biocomposites, as well as the nature, amount and deposition
of nanoclay, significantly influenced thermostability of the com-
posite obtained.
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a
, Sandra Bischof

a,*, Edita Vujasinović
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Abstract Different chemical pre-treatments of Spartium junceum L. fibres using alkali (NaOH),

nanoclay (MMT) and Citric acid (CA) with the aim of producing biodegradable composite material

are discussed. As environmental requirements in processing technologies have been higher in recent

years, the Polylactic acid (PLA) is used in this research as a matrix, due to its renewability,

biodegradability and biocompatibility. Biocomposites are prepared by reinforcing PLA with ran-

domly oriented, short Spartium junceum L. fibres in order to increase material strength. The effects

of different pre-treatments of Spartium junceum L. fibres on the mechanical properties of final bio-

composite material are examined. Fibre tenacity is studied using Vibroscop and Vibrodyn devices.

Tensile strength of biocomposite material was measured on the universal electromechanical testing

machine Instron 5584. The results indicate that biocomposites reinforced with fibres modified with

MMT and CA show upgraded mechanical properties of the final composite material in comparison

with the composite materials reinforced with referenced (nontreated) fibres. Infrared spectra of

tested fibres and biocomposites were determined with Fourier transform infrared spectroscopy

using Attenuated total reflection (FT-IR ATR) sampling technique and the influence of fibre mod-

ifications on the fibre/polymer interfacial bonding was investigated. The interface of Spartium/PLA
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composites was observed with scanning electron microscope (SEM) and it was clearly visible that

biocomposites reinforced with fibres modified by MMT and CA showed better interaction of fibres

and matrix.

� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Synthetic fibre reinforced polymer composites have been used for aero-

space, defence, marine, automotive, civil infrastructure, etc., for more

than 50 years, offering high strength and stiffness, dimensional stabil-

ity and good thermal properties. Nowadays, due to increased environ-

mental consciousness, the focus of the researchers is shifted to

biocomposites, with the application areas remaining the same

(Kumar et al., 2010). With the continuous growth for more than

50 years, global plastic production in 2013 was 300 million tonnes

(http://www.plasticseurope.org/documents/document/20150227150049

-final_plastics_the_facts_2014_2015_260215.pdf). Although the dura-

bility of plastics was initially considered as a great advantage, environ-

mental problems caused by the disposal of plastic waste (huge volumes

of landfill space around the world, disposal of plastic waste in the mar-

ine environment) have arisen (Molinaro et al., 2013; Philp et al., 2013).

It led to the conclusion that production of bioplastic, whether it is

biobased or biodegradable, would partially solve the problem of its

disposal.

The main representative in the group of biodegradable plastic

materials is biopolymer based on Polylactic acid (PLA) (Armentano

et al., 2013), which is completely degradable. By hydrolysis it can be

decomposed to lactic acid, which is subsequently decomposed to water

and carbon dioxide by metabolic processes (Oksman et al., 2003).

Degradation degree depends on the temperature, size and shape of

the polymer, and the proportion of isomers (Oksman et al., 2003;

Raquez et al., 2013; Teramoto et al., 2004).

An increasing development of environmental consciousness and

thus a significant interest in natural fibres for the production of bio-

composites have been initiated in recent years (Li et al., 2011;

Mohanty et al., 2005; Pickering et al., 2016; Pickering and Le, 2016;

Shalwan and Yousif, 2013). The use of natural fibres as a reinforce-

ment in composite materials has been steadily increasing and has

gained a significant interest over past few years (Kim et al., 2014;

Ramesh, 2016; Sahari et al., 2013a, 2013b; Sanyang et al., 2015;

Vaisanen et al., 2016). Composites reinforced with natural fibres are

one of the most commonly used biodegradable materials. They consist

of a matrix that can be a biodegradable polymer like PLA, and of rein-

forcements such as natural fibres, yarns or fabrics. Biopolymers rein-

forced with biofibres can offer new biocomposites, capable of

replacing previously used materials, e.g. glass fibres. One of the most

common natural fibres used in biocomposites is bast fibres, such as

flax, hemp, jute or Spartium junceum L. (Angelini et al., 2013;

Caprino et al., 2015; Graupner and Mussig, 2010; Marrot et al.,

2014; Mussig and Haag, 2014; Nekkaa et al., 2008; Nekkaa et al.,

2009; Pickering and Aruan Efendy, 2016; Sam-Brew and Smith, 2015).

Spartium junceum L. is a native plant used for obtaining fibres of

exceptional strength. It grows mostly in the Mediterranean countries,

so we can find it at Croatian islands, in particular the Dalmatian ones.

Throughout history, Spartium junceum L. has had a wide range of

applications e.g. perfume and dye production from the flowers, baskets

from the stems and textile materials from the fibres (Bischof and

Kovačević, 2013). As the fibres still remain the main product, there

is a significant value today for their production. The fibres have prop-

erties similar to flax fibres and are mostly used in the production of

technical textiles (Kovačević et al., 2012). Such fibres could be widely

applicable, especially in the automotive industry, in the development of

car interiors e.g. carpets, trims on the inside door, cover for the spare

wheel (Huda et al., 2008; Partanen and Carus, 2016; Poulikidou et al.,

2016; Sindhuphak, 2007).

Production of fibres requires large consumption of water and

energy, but production of natural fibres with all of the mentioned

above is also a significant time-consuming process. Microwave treat-

ment in textile industry has shown to be fast, uniform and the efficient

technique. The microwave energy can easily penetrate inner fibre par-

ticle; thus, all the particles can be heated simultaneously, reducing heat

transfer problems. Microwave energy has been used in finishing, dying,

whitening and thermal treatments of textile materials. The usage of

microwave technology in textile industry is still unexplored and open

to further improvements. In the work described, microwave technol-

ogy was used for maceration of Spartium junceum L. fibres in order

to increase the effectiveness of composite material production (lower

use of water and energy) (Büyükakinci, 2012; Mahmoodi et al., 2010).

Furthermore, the application of nanotechnology in biocomposite

production has shown promising potential in the development of next

generation materials for structural applications (Zhang et al., 2006). In

this work we combined PLA as the matrix, Spartium junceum L. fibres

as the reinforcement and montmorillonite clay (MMT) as the nanofil-

ler in order to investigate mechanical properties of such biocomposites.

The increasing use of biocomposites in daily human life provides a bet-

ter and healthier life for every individual and the steady progress of our

eco-system.

2. Experimental

2.1. Materials

Spartium junceum L. fibres were obtained from the Spartium
junceum L. plant which was harvested in the area of town Šibe-
nik, Croatia (Table 1).

PLA (6201 D) was purchased from Nature Works LLC,

USA (Table 2). NaOH pellets (purityP 97%), Nanoclay
(modified with 25–30 wt.% octadecylamine), Citric acid and
Sodium Hypophosphite Hydrate (NaH2PO2) used for this

study were obtained from Sigma-Aldrich Company Ltd., UK.

2.2. Methods

2.2.1. Microwave maceration method

Spartium junceum L. stems were placed into a polytetrafluo-
roethylene (PTFE) container and into microwave (MW) reso-

Table 1 Physical and mechanical properties of Spartium

junceum L. fibres.

Density

(g/cm3)

Diameter

(lm)

Tensile

strength

(MPa)

Young’s

modulus

(GPa)

Elongation

at break (%)

1.55 45–65 986.46 17.86 6.03
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nant cavity. Prior to the MW process, fresh stems were
immersed in 5% (w/v) NaOH solution (the ratio of stems in

(g) to NaOH solution in (mL) was 1:12). After 5 min running
at 900 W in the MW the fibres were extracted from the stems.
Stems were washed in distilled water and fibres were pulled

out. Fibres were washed again in distilled water until neutral
pH was reached. After washing, the fibres were air dried.

2.2.2. Fibre pre-treatment

2.2.2.1. Alkali treatment. Fibres were treated with 5% (w/v)
NaOH solution, maintaining a fibre/solution ratio of 1:20

(by weight) for 48 h at 25 �C and washed with distilled water
repeatedly to avoid any presence of alkali. At the end fibres
were neutralized with 1% acetic acid and washed again with

distilled water. Alkali treated fibres were dried in the oven at
60 �C for 24 h and stored at ambient temperature in a
desiccator.

2.2.2.2. Alkali and nanoclay (MMT) treatment. 5% (w/v)
NaOH solution was heated for 15 min at 60 �C. Nanoclay
was added inside and the treatment continued for 30 min at

the same temperature with the constant mixing, prior to the
fibres being immersed. Fibres/nanoclay ratio was 1:1 and
fibre/solution ratio was 1:20. Fibres were treated in the solu-

tion for 1 h at 60 �C. Finally, fibres were washed with distilled
water and dried in the oven at 60 �C for 24 h and stored at
ambient temperature in a desiccator.

2.2.2.3. Nanoclay and citric acid (CA) treatment. Solution of
2.2 g Citric acid, 1.1 g NaH2PO2, 5 g of nanoclay and

330 mL of water was prepared and treated at 80 �C for 3 h
with continuous stirring. After the solution was cooled to the
room temperature fibres were immersed and left overnight.
After treatment the fibres were washed with distilled water

and dried in the oven at 60 �C for 24 h and stored at the ambi-
ent temperature in a desiccator.

2.2.3. Composite production

After pre-treatment, the fibres were cut to the length of
2–5 mm. PLA pellets were oven pre-dried at 60 �C for 48 h
and then melted in a vacuum oven at 170 �C. 20 wt.% of short

fibres was put in an aluminium oval shaped mould, together
with melted PLA. The 15 kg weight was placed on the mould
(Ø 8.5 cm) and left for 2 h at room temperature. Intermediate

composite product was placed between two aluminium sheets
protected with release polymer film and preheated in a
compression moulding machine at 170 �C. It was left with no

load for 5 min and then hot pressed at 170 �C under 1 ton
(1000 kg), for 5 min more. The sample was taken out from
hot press and left to air cool down under 10 kg weight on

the mould.

3. Characterization

3.1. Fibre fineness, strength and elongation

Breaking tenacity, elongation as well as fineness of individual
fibres were examined using the Vibroscop and Vibrodyn
devices, Lenzing Instruments. Tension, testing speed and

gauge length values were 0.015 N, 3 mm/min and 5 mm respec-
tively. Samples were conditioned at the standard temperature
(20 ± 2 �C) and relative humidity (65 ± 4%). An average of

150 tests for individual fibres was used in this study.

3.2. Fourier transform infrared (FT-IR) spectra

Infrared spectroscopy (FT-IR) spectra were obtained with a

Perkin Elmer Spectrum 100 FT-IR spectrometer using attenu-
ated total-reflection (ATR) method. The analyses were carried
out at room temperature and ambient humidity. The solid

samples in their original form were placed onto the ATR crys-
tal, ensuring the crystal was completely covered and the pres-
sure was applied. All spectra were registered from 4000 cm�1

to 380 cm�1, with a resolution of 4 cm�1. The background
was collected at the beginning of the measurement. Each spec-
trum was collected from an average of 4 scans.

3.3. Composite tensile testing

Tensile tests for polymer/fibre composite materials modified
with 3 different pretreatments were carried out using Instron

5584 testing machine at a crosshead speed of 3 mm/min and
20 mm gauge length. Five samples of each category were tested
and their average values were reported.

3.4. Scanning Electron Microscopy (SEM) examinations

Polymer/fibre interface and morphological features were stud-

ied by using scanning electron microscope (FE-SEM//Mira,
Tescan). SEM microscope was operated at 20 kV and various
magnification levels due to the need to obtain a good SEM

image. Prior to the SEM investigation samples were coated
with Au/Pd in order to increase their electrical conductivity.

4. Results and discussion

4.1. Properties of Spartium junceum L. fibres

Spartium junceum L. (SJL) fibres are produced from the outer
part of SJL stem. Its technical fibres come in bundles of ele-
mentary fibres held together by pectinous gums. Each elemen-

tary fibre can be considered as a network of ultrafine cellulose
microfibrils embedded in a matrix of hemicellulose and lignin
(Akin, 2010; Kostić et al., 2008). The SJL elementary fibre is

about 18.0 lm wide and its cross section indicates the presence
of a thick secondary cell wall (7.32 lm), as shown in Fig. 1(a)
and (b).

Table 2 Physical Properties data of used PLA polymer.

[http://www.natureworksllc.com/�/media/Technical_ Resources/

Technical_Data_Sheets/TechnicalDataSheet_6201D_fiber-melt-

spinning_pdf.pdf].

Physical properties PLA Ingeo 6201D

Specific gravity 1.24

Relative viscosity 3.1

Melt index (g/10 min) [210 �C] 15–30

Melt density (g/cm3) [230 �C] 1.08

Glass transition temperature (�C) 55–60

Crystalline melt temperature (�C) 155–170
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The secondary cell wall is of extreme importance because of

its influence on fibre properties, while its cellulose-rich fibre
structure offers higher tensile strength (His et al., 2001;
Zhong and Ye, 2009). Because of the polygonal cross-

sectional shape and thick cell wall of its fibres, SJL has the pos-
sibility to provide better quality fibres (better light reflection
and absorption) (Charlet et al., 2010; His et al., 2001; Khan

et al., 2011; Romhany et al., 2003). SJL fibres have fibre nodes
and kink bands that appear as horizontal bands in the elemen-
tary fibres and bundles and such dislocations are regions where

moisture and various chemicals can penetrate and influence
fibre properties (Charlet et al., 2010; Khan et al., 2011;
Romhany et al., 2003). One of the most important properties
is fibre strength. Although it was concluded in our preliminary

investigation (Kovačević et al., 2012) that there is no signifi-
cant difference in the strength of fibres produced by the mac-
eration methods when using water retting or osmotic

degumming, our present work shows obvious difference in
strength when compared results obtained with those of the
MW method of maceration.

Treatment of stems with microwave energy has proven to
be an effective method of maceration because it offers shorter

time and lower energy consumption, as well as better results

regarding fibre tenacity than previously tested maceration
methods (Bischof et al., 2014; Katović et al., 2011;
Kovačević et al., 2012; Kovačević et al., 2014).

Fig. 2 shows that fibre tenacity after microwave treatment
has increased 58.5% and 39.5% in comparison with water ret-
ting and the osmotic degumming maceration, respectively.

Such results indicate that microwave treatment is an ecological
and economical method of maceration, which could be used in
the reinforcement production in order to decrease overall costs

of composite materials.

4.2. The effect of pre-treatments on fibre strength, fineness and
elongation

4.2.1. Fibre strength

In order to improve the properties of the fibre and its compos-

ites (tensile strength, fineness, etc.), pre-treatment of fibres was
done. Tensile strength results of reference fibres (R), addition-
ally alkali-treated fibres (1), MMT/NaOH-treated fibres (2)

and MMT/CA-treated fibres (3) are given in Table 3.

Figure 1 SEM micrographs of Spartium junceum L. fibres (a) longitudinal image of elementary fibre as a part of technical fibre and (b)

cross section image of elementary fibre.

Figure 2 The results of measuring breaking tenacity of Spartium junceum L. reference fibres after different maceration methods, where:

WR – water retting; OD – osmotic degumming; MW – microwave treatment.
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ANOVA: Single factor data analysis tool was used to per-
form analysis of variance during the result processing and to

determine whether there are any significant differences
between the means of 4 groups of fibres, after the breaking
tenacity determination, as given in Table 4. The null hypothe-

sis was that there is no significant difference between the group
sample means. According to the P-value, a significant differ-
ence was established among breaking tenacity of the tested

fibres considering the applied pre-treatment method. Since
P 6 0.05, it could be concluded that there was statistically sig-
nificant difference with the 95% confidence in the fibre tenacity

among at least two group means that are significantly different
from each other. To determine which specific groups differed
from each other, Tukey’s HSD Post hoc test was used

(Table 4).
It could be seen that fibres modified with MMT (2 and 3)

show statistical insignificant difference in the breaking tenacity

values, and more precisely, the pre-treatment method with
MMT/CA (3) has not influenced strength of fibres compared
to pre-treatment method with MMT/NAOH (2). Tenacity

results of samples 2 and 3 indicate improvement in strength
while fibres modified additionally with NaOH (1) showed rel-
atively lower strength value, compared with reference fibres
(R), which is probably due to the repeated alkali treatment

resulting in additional delignification of fibres resulting in
weaker or damaged fibre (Li et al., 2007). Alkali solution pro-
vided OH� and Na+ ions to react with the substances on the

fibre, causing partial removal of lignin, pectin, waxes and
hemicelluloses, which would be detrimental to fibre strength
(Andiç-Çakir et al., 2014). MMT clays consisted of alumino-

silicate clay nanolayers which were separated from each other
by an interlayer distance, where exchangeable ions existed,
causing neutralization of the charge between those layers.

MMT-modified fibres (2 and 3) showed improvement in their
mechanical properties due to the MMT nanolayered structure
and its high aspect ratio (length/thickness) approx. 100–
1000 nm (Mohan and Kanny, 2012).

Table 4 ANOVA and Tukey Post hoc Test among the breaking tenacity of the fibres obtained by different pre-treatments.

Groups Count Sum Average Variance

SUMMARY

Ra (cN/tex) 150 9666.25 64.44166667 126.3239

1b (cN/tex) 150 9000.32 60.00213333 68.62814

2c (cN/tex) 150 10326.24 68.8416 91.84757

3d [cN/tex] 150 10109.66 67.39773333 78.15458

Source of variation SSe dff MSg Fh P-valuei F crit

ANOVA & TUKEY TEST

Between Groups 6852.113286 3 2284.037762 25.0337 2.89E�15 3.81462

Within Groups 54378.16885 596 91.23853833

Total 61230.28213 599

Groups of fibres Q criticalj Q statistick Qstat > Qcrit Statistical conclusion

R vs. 1 3.6435 5.6924 > Significant difference

R vs. 2 3.6435 5.6416 > Significant difference

R vs. 3 3.6435 3.7903 > Significant difference

1 vs. 2 3.6435 11.334 > Significant difference

1 vs. 3 3.6435 9.4827 > Significant difference

2 vs. 3 3.6435 1.8513 < Insignificant difference

a The reference fibres.
b The fibres treated with NaOH.
c The fibres treated with MMT.
d The fibres treated with MMT and CA.
e Sum of squares.
f Degrees of freedom.
g Mean square.
h Empirical F ratio (MS between groups/MS within groups).
i P-value (If P P 0.05 there is no statistically significant difference between the arithmetic mean of the samples).
j Q critical value of the Tukey-Kramer HSD Q statistic based on the k = 4 treatments and df= 596 degrees of freedom for the error term, for

significance level a= 0.05 in the Studentized Range distribution.
k Q statistic (Tukey-Kramer HSD Q-statistic) – parameter calculated for each pair of columns being compared.

Table 3 Tenacity, fineness and elongation of reference and

modified fibres, and data in brackets represent standard

deviations.

Sample Tenacity (cN/tex) Fineness (dtex) Elongation (%)

Ra 64.44 (11.24) 36.75 (11.28) 6.03 (1.14)

1b 60.00 (8.28) 35.76 (9.50) 6.70 (1.29)

2c 68.84 (9.58) 34.25 (9.33) 8.39 (1.26)

3d 67.40 (8.84) 37.19 (9.22) 7.62 (1.44)

a The reference fibres.
b The fibres treated with NaOH.
c The fibres treated with MMT.
d The fibres treated with MMT and CA.
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4.2.2. Fibre structural characterization

Fig. 3 shows the IR spectra of Spartium junceum L. fibres

obtained by different methods of modification (pre-
treatments). Bast fibres are usually characterized by several
absorption bands: one from 3000 cm�1 to 3700 cm�1 that rep-

resents free OH groups and intra- and inter-molecular hydro-
gen bonds and two bands at 2844 cm�1 and 2900 cm�1 which
are attributed to the CH and CH2 groups of pectins, fats and

waxes (Kovačević et al., 2012). The broad peak in the range of
3000–3700 cm�1 and the peak at 1631 cm�1 were due to the

Figure 3 IR spectra of Spartium junceum L. fibres, where: R – the reference fibres; 1 – the fibres treated with NaOH; 2 – the fibres treated

with MMT; and 3 – the fibres treated with MMT and CA.

Table 5 ANOVA and Tukey Post hoc Test among the fineness of the fibres obtained by different pre-treatments.

Groups Count Sum Average Variance

SUMMARY

Ra (dtex) 150 5512.36 36.74906667 127.1605

1b (dtex) 150 5363.29 35.75526667 90.28803

2c (dtex) 150 5137.39 34.24926667 86.98075

3d (dtex) 150 5579.13 37.1942 84.98998

Source of variation SSe dff MSg Fh P-valuei F crit

ANOVA & TUKEY TEST

Between Groups 766.7242365 3 255.5747455 2.625188 0.049647 2.619853597

Within Groups 58023.47528 596 97.3548243

Total 58790.19952 599

Groups of fibres Q criticalj Q statistick Qstat > Qcrit Statistical conclusion

R vs. 1 3.6435 1.2336 < Insignificant difference

R vs. 2 3.6435 3.1029 < Insignificant difference

R vs. 3 3.6435 0.5525 < Insignificant difference

1 vs. 2 3.6435 1.8694 < Insignificant difference

1 vs. 3 3.6435 1.7861 < Insignificant difference

2 vs. 3 3.6435 3.6555 > Significant difference

a The reference fibres.
b The fibres treated with NaOH.
c The fibres treated with MMT.
d The fibres treated with MMT and CA.
e Sum of squares.
f Degrees of freedom.
g Mean square.
h Empirical F ratio (MS between groups/MS within groups).
i P-value (If P P 0.05 there is no statistically significant difference between the arithmetic mean of the samples).
j Q critical value of the Tukey-Kramer HSD Q statistic based on the k= 4 treatments and df= 596 degrees of freedom for the error term, for

significance level a = 0.05 in the Studentized Range distribution.
k Q statistic (Tukey-Kramer HSD Q-statistic) – parameter calculated for each pair of columns being compared.
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characteristic axial vibration of the cellulose hydroxyl group.
Absorption bands at 2844 and 2900 cm�1 could be observed
in the spectra of all the fibres, but they were more intensive

in the spectra of referenced fibres (R) pointing to the minor
amount of pectins, waxes and fats inside other tested fibres.

Lignin is characterized by absorption bands at 1506 cm�1

and it could be observed only in the spectra of referenced
fibres. The MMT treated fibres (2 and 3) showed broader
peaks around 1022 cm�1 due to SiAO plane stretching vibra-

tions. In the other treated fibres (1, 2 and 3), the dissolution
of lignin phase was clearly observed, due to the absence of
their characteristic peak at 1506 cm�1. The hydroxyl group
of referenced Spartium fibre (R) at 1631 cm�1 (due to cellu-

lose) was less intensive in the treated fibres.

4.2.3. Fibre fineness

Fibre fineness is an important factor in determining the stiff-
ness of its final product. The resistance to bending reduces as
the fineness of the fibre increases (Morton and Hearle, 2008;

Sinclair, 2015; Yan et al., 2016). The most common fineness
(measured on the basis of 3 highest values) of the reference
fibres (R), NaOH-treated fibres (1), MMT/NaOH-treated

fibres (2) and the fibres treated with MMT and CA (3) was
in the category from 25 to 40 dtex (57.3% for all the tested
(R) fibres), 25 to 40 dtex (58.7% for all the tested (1) fibres),

25 to 40 dtex (61.4% for all the tested (2) fibres) and 30 to
45 dtex (63.3% for all the tested (3) fibres), respectively. Fine-
ness depends not only on the shape but also on the used

method of fibre pre-treatment as well (Lanzilao et al., 2016),
although, according the Table 5, it can be seen that significant
difference in fibre fineness is only between samples 2 and 3.

Fibres obtained by pre-treatment with MMT and CA, as

shown in Fig. 4(d), were coarser and their decreased fineness
was attributed to the MMT particles, showing better linking
to the fibre surface due to CA, which served as a cross linker

in comparison with the fibres obtained by the modification
with MMT/NaOH (22% of all the tested (2) fibres within the
range from 25 to 30 dtex). It was mentioned earlier that dislo-

Figure 4 Frequency of fineness for 150 measurements of (a) the reference fibres (R); (b) the NaOH-treated fibres (1); (c) the MMT-

treated fibres (2); and (d) the MMT- and CA-treated fibres (3).

Figure 5 IR spectra of PLA polymer reinforced with Spartium junceum L. fibres, where: CR – composite reinforced with reference

fibres; C1 – composite reinforced with the fibres treated with NaOH; C2 – composite reinforced with the fibres treated with MMT;

C3 – composite reinforced with the fibres treated with MMT and CA.
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cations in the fibres are regions where moisture and various
chemicals could penetrate and influence fibre properties, and
as such they represented the weakest link in natural fibres.

Therefore, the increase of mechanical properties of composite
materials reinforced with MMT/CA fibres could be attributed
to the ‘‘repair” of dislocations in the fibre (Dai et al., 2013).

4.2.4. Fibre elongation

Elongation at break of the fibres is the elongation of the test
specimen produced by the breaking force, expressed as a per-

centage of the initial gauge length (Li et al., 2007; Reddy
and Yang, 2009). Breaking elongation of fibres that underwent
modification 2 was higher (8.39%) than the elongation of the

Table 6 Main infrared transition for PLA.

Wave number (cm�1) Vibration

3000–3600 OH stretching

2997 Asymmetric CH3 stretching

2945 Symmetric CH3 stretching

1750 Asymmetric C‚O stretching

1300–1500 Symmetric CH, CH3 deformation

1180 Symmetric CAOAC stretching

1129 Asymmetric CH3 bending

1081 Asymmetric CAOAC stretching

1041 CACH3 stretching

870 CACOO stretching

754 C‚O bending

Figure 6 Scanning electron micrographs of the fibre reinforced composites and tensile fracture surface of the composites, where: (a) the

reference fibre (R); (b) fractured surface of the CR composite; (c) the NaOH-treated fibre (1); and (d) fractured surface of the C1

composite.
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other tested fibres, implying the decreased stiffness and brittle-
ness of the fibres modified only with the MMT. Such property
could be explained with interfacial adhesion between the fibre

and MMT, where weaker interfacial adhesion resulted in
higher elongation at break (Santiago et al., 2011). Therefore,
enhancement in mechanical properties of the composite mate-

rials reinforced with fibres treated with MMT/NaOH was not
expected.

4.3. The effect of pre-treatments on the bonding/interface
performance of Spartium/PLA composites

4.3.1. Chemical composition of Spartium/PLA composites

During the analysis of fibres and composites, infrared spectra
presented in Figs. 3 and 5 and taking into account the main

infrared peaks of pure PLA polymer (Table 6), the chemical
composition of biocomposites and the influence of already
mentioned modification on the fibre/polymer interfacial bond-

ing, were investigated.
Fig. 5 shows the IR spectra of PLA biocomposites rein-

forced with Spartium junceum L. fibres. The hydroxyl peaks

represented between 3000 and 3600 cm�1 decreased signifi-
cantly with the introduction of MMT in the biocomposites
(C2 and C3). In the NaOH (C1) and MMT/CA (C3) compos-

ites, the hydroxyl peak broadened further and formed a peak
at 2945 cm�1. Due to the inter- or the intra-molecular hydro-
xyl group bonding with polysaccharides, the shifting of fre-
quency to 2945 cm�1 (Mohan and Kanny, 2012) occurred.

The shifting of peak pertaining to AOH group indicated the
participation of hydroxyl group of clay in the crosslinking

Figure 7 Scanning electron micrographs of the fibre reinforced composites and tensile fracture surface of the composites, where: (a) the

fibre treated with MMT (2); (b) fractured surface of the C2 composite; (c) the fibre treated with MMT and CA (3); and (d) fractured

surface of the C3 composite.
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reaction of fibre and polymer in the C3 composite. The char-
acteristic peak at 1750 cm�1 due to the C‚O stretching could
be observed in all the spectra. The intensity of C‚O stretching

was found to increase in the crosslinked composite (C3), sug-
gesting the increase of the number of unbounded/free car-
boxylic end groups in the polymer chain. Moreover, the

peak intensity of AOH bending vibration at 1645 cm�1 was
also found to decrease, especially in the C3 composite, suggest-
ing the formation of bonds between clay, fibres and polymer.

Peaks at 1606 cm�1, 1509 cm�1 and 827 cm�1 were attributed
to the lignin from fibres and they could be observed only in
the CR composite reinforced with reference fibres (R). The dis-
appearance of these peaks indicated the delignification of fibres

subjected to the modification 1, 2 and 3. Bands visible in the
range 1300 –1500 cm�1 might be assigned to symmetric and
asymmetric vibrations of CAH present in CH3 of PLA

(Iman and Maji, 2012; Molinaro et al., 2013). It was also
observed that the CAH bending vibrations at around
1380 cm�1 were intensified due to the chemical treatment of

Spartium junceum L. fibres. The peak at 1180 cm�1 was attrib-
uted to CAOAC stretching of PLA. The cooling process
involved in the composite production seemed to be fast enough

to prevent a rearrangement of polymer chain into a crystalline
structure. This could explain the shoulder visible at 1210 cm�1.
The appearance of the peaks at 1129, 1081 and 1041 cm�1 may
correspond to CAO stretching vibrations. The peak at around

1080 cm�1 was due to the associated hydrogen group. The
peaks shown in the range 1030–460 cm�1 were the characteris-
tic peaks of oxide bonds of the metals, i.e. Si, Al, Mg, etc. pre-

sent in the nanoclay. In the spectra of the C2 composite, the
intensity of the metal oxide peaks at 1030–460 cm�1 was found
to be decreased in comparison with the spectra of the C3 com-

posite, indicating lower intensity of the SiAO stretching peaks,
which showed that there was no strong interaction among
PLA polymer, fibre and clay. Finally, the IR bands detected

at 870 cm�1 and 754 cm�1 could be assigned, respectively, to
the amorphous and crystalline phases of PLA (Deka et al.,
2012).

4.3.2. The interface of Spartium/PLA composites

Mechanical properties of composites based on natural fibres
are strongly influenced by the interface adhesion between the
fibres and the polymer matrix, which is related to the chemical

composition of the fibre surface and the matrix chemical struc-
ture. Good interface causes increment of the stress transmis-
sion from the matrix to the fibre and thus enhances the

tensile strength of the composite (Li et al., 2009; Oliver-
Ortega et al., 2016). There are significant problems of compat-
ibility between the fibre and matrix, i.e. natural fibres tend to

be strong polar and hydrophilic materials, while polymers
exhibit significant hydrophobicity causing weak interface area
between natural fibres and matrices. However, a number of

published papers report on possible chemical treatments which
might improve the matrix-fibre interfacial adhesion (Alamri
et al., 2012; Chen and Yan, 2013; Hossain et al., 2011; Orue
et al., 2016).

SEM micrographs of Spartium junceum L. reference and
modified fibres and fractured surface of its composites without
and with clay are presented in Figs. 6(a–d) and 7(a–d),

respectively.

The surface of the R fibre (Fig. 6a) was smooth and regular
in comparison with the surface of the fibre 1, where roughness
at the surface was little bit increased by additional treatment of

the technical fibre with NaOH. Fibre matrix debonding and
fibre pull-out were more evident in the composite CR than
in C1, indicating that the interfacial adhesion between matrix

and reference fibre was worse and the fact was supported by
lower mechanical properties, in comparison with the C1
mechanical properties (Table 7).

Fig. 7(a) and (c) shows fibres treated with MMT/NaOH
and MMT/CA respectively.

Fibre surface roughness was increased with the addition of
clay (Fig. 8). However, on adding MMT into the composites

(C2), the fractured surface of the composite was found to be
very brittle and full fibre/matrix debonding was observed, indi-
cating lower mechanical properties of the C2, in comparison

with the other tested composites. The C3 composite showed
smoother fractured surface, which might be due to the fact that
the combination of the MMT and CA particles increased the

Table 7 Mechanical properties of tested biocomposites.

Sample Strength

(MPa)

Modulus

(GPa)

Elongation at break

(%)

PLAa 17.68 (1.42) 1.40 (0.52) 5.15 (1.06)

CRb 41.87 (3.09) 1.65 (0.50) 7.07 (0.86)

C1c 42.65 (2.67) 1.89 (0.14) 5.80 (0.69)

C2d 19.81 (1.64) 1.17 (0.14) 5.68 (1.26)

C3e 46.67 (3.29) 2.60 (0.20) 7.40 (0.53)

a Pure PLA polymer.
b Biocomposite reinforced with the reference fibres.
c Biocomposite reinforced with the NaOH-treated fibres.
d Biocomposite reinforced with the MMT-treated fibres.
e Biocomposite reinforced with the MMT- and CA-treated fibres.

Figure 8 SEM micrograph of pure nanoclay (MMT).
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interaction with PLA matrix which resulted in less pulled out
fibres from the fractured surface in comparison with the CR,
C1 and C2 composites.

4.4. The effect of pre-treatments on the tensile strength of

Spartium/PLA composites

Tensile strength of a composite material is influenced by the
nature and properties of the matrix and the fibre, reinforce-
ment aspect ratio and its orientation, the fibre content and

their dispersion along the matrix as well as the interaction
between the matrix and the fibre (interfacial shear strength)
which is the most important factor. As already mentioned,

the tenacity of the fibres (2) and (3) was practically the same
and increased compared to the referenced sample (R).

Although fibres showed good results regarding their mechani-
cal properties, some irregularities could be observed in its com-
posite mechanical properties (Figs. 9 and 10, Table 7).

Tensile strength of pure PLA was very low. However, intro-
ducing fibres resulted in significant increase in the mechanical
properties. Higher strength of 136.8%, 141.2%, 12.0% and

164.0% for the CR, C1, C2 and C3, respectively was recorded,
as compared to the pure PLA. Since NaOH treated fibres (1)
show decrease in the tenacity in comparison with the (R) fibres

because of removal of non-cellulosic compounds and possible
creation of the voids in the fibre structure, its composites (C1)
have shown increase in strength. The possible reason for that is
filling of voids inside the fibre with PLA polymer resulted in

improved fibre/PLA adhesion mainly due to mechanical inter-
locking mechanism (Essabir et al., 2016; Orue et al., 2016;

Figure 9 Tensile strength of tested composites where: PLA – pure PLA polymer prepared by the same method as the composites; CR –

composite reinforced with the reference fibres; C1 – composite reinforced with the NaOH-treated fibres; C2 – composite reinforced with

the MMT-treated fibres; C3 – composites reinforced with the MMT- and CA-treated fibres.

Figure 10 Young modulus of tested composites where: PLA – pure PLA polymer prepared by the same method as the composites; CR –

composite reinforced with the reference fibres; C1 – composite reinforced with the NaOH-treated fibres; C2 – composite reinforced with

the MMT-treated fibres; C3 – composites reinforced with the MMT- and CA-treated fibres.
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Pickering and Le, 2015). Rougher surface of NaOH treated
fibres, as well as its ability of rigidly attaching to the matrix,
caused improvements in tensile strength and modulus of the

C1 Sample over the sample reinforced with the reference fibres
– CR (136.8% and 14.5% increase in tensile strength and mod-
ulus respectively), which was still lower than the mechanical

properties of the MMT/CA modified composite. The sample
C3 showed highest strength and modulus values, indicating
higher toughness of material. These results indicated that nan-

oclay adsorbed on the fibre surface contributed to the stiffen-
ing of the resulting composite. Increase of the Young’s
modulus in comparison with the neat PLA was noted in all
samples except the sample C2. This increment is a common

behaviour when rigid fillers are incorporated into softer poly-
mer matrix. Therefore, the addition of clay particles to a PLA
polymer can enhance the stiffness of the composite material

since the rigidity of inorganic particles is higher in comparison
with polymers or natural fibres (Essabir et al., 2016). The rea-
son for low mechanical properties of the sample C2 could be

attributed to the decrease of interface properties and fibre-
matrix adhesion due to weak adsorption force between the clay

particles and the fibre surface and formation of a greater num-
ber of filler to filler bonds (clay-clay or fibre-fibre), which was
also visible in larger amount of air voids observed inside the

body of the sample (Fig. 11).
Low interaction between matrix and fibre causes the com-

posite’s tensile strength to remain similar to the matrix tensile

strength possibly due to fibres sliding during testing
(Oliver-Ortega et al., 2016; Serrano et al., 2014). Increase of
the elongation at break of all composites (CR, C1, C2 and

C3) compared to the neat PLA is something unexpected.
In general, polymers have higher elongation at break in

comparison with the natural fibres which leads to the increase
of brittleness of material made of polymer reinforced fibres.

The usual trend between tensile strength and elongation is that
one grows while the other decreases.

In this case, when tensile strength and elongation at break

both increased, the composite material is tougher and can
withstand fracturing if a crack grows so long that the rein-
forcement cannot support the load (Granda et al., 2016a,

2016b).

Figure 11 Dino-Lite digital microscope images at 50� magnification presenting voids on the surface of: (a) CR composite; (b) C1

composite; (c) C2 composite; and (d) C3 composite.
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5. Conclusion

The aim of this research was to improve mechanical properties of PLA

biocomposites reinforced with Spartium junceum L. fibres through fibre

modification by NaOH, MMT and CA. Development of natural fibres

as reinforcement in composite materials is challenging because of the

high mechanical properties demanding and the general lack of such

properties in natural fibres. Chemical treatment and usage of nanoclay

filler increased the compatibility between Spartium junceum L. fibre,

clay and polymer matrix resulting in higher adhesion and better effi-

ciency for stress transfer.

Tensile strength and modulus of the most promising biocomposites

i.e. composite reinforced with MMT and CA treated Spartium fibres

(C3) were improved by 164.0% and 85.7% respectively, as compared

to the pure PLA sample. Having in mind that CA is well known as

eco-friendly crosslinker with a positive impact on the flame retardant

properties of cellulose fibres, better thermal properties of C3 composite

were expected.

Further improvements of such biocomposites require more investi-

gation on the modification of Spartium junceum L. fibres by CA, serv-

ing at the same time as an ecological crosslinker in this biosystem,

maximizing the affinity between a hydrophilic fibre and a hydrophobic

PLA matrix.

Acknowledgements

Part of the presented work was carried out at the premises of
Brunel University, School of Engineering and Design, Depart-
ment of Civil Engineering, Uxbridge, UK, and funded by the

mobility grant for PhD student, provided by the British Scholar-
ship Trust. Second part was funded by Croatian Science Foun-
dation under the project 9967 ADVANCETEX: Advanced

textile materials by targeted surface modification, and is grate-
fully acknowledged (http://www.ttf.unizg.hr/advancetex).

References

Akin, D.E., 2010. Chemistry of plant fibres. In: Mussig, J. (Ed.),

Industrial Applications of Natural Fibres: Structure, Properties

and Technical Applications. John Wiley & Sons, Ltd., UK, pp. 13–

23, ISBN: 978-0-470-69501-1.

Alamri, H., Low, I.M., Alothman, Z., 2012. Mechanical, thermal and

microstructural characteristics of cellulose fibre reinforced epoxy/

organoclay nanocomposites. Compos. B – Eng. 43, 2762–2771.
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Peng, Q., Zhong, W., 2011. Fineness and tensile properties of hemp

(Cannabis sativa L.) fibres. Biosyst. Eng. 108, 9–17.

Ramesh, M., 2016. Kenaf (Hibiscus cannabinus L.) fibre based bio-

materials: a review on processing and properties. Prog. Mater Sci.

78–79, 1–92.

Raquez, J.-M., Habibi, Y., Murariu, M., Dubois, P., 2013. Polylactide

(PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542.

Reddy, N., Yang, Y., 2009. Properties of natural cellulose fibers from

hop stems. Carbohydr. Polym. 77, 898–902.

Romhany, G., Karger-Kocsis, J., Czigany, T., 2003. Tensile fracture

and failure behaviour of technical flax fibers. J. Appl. Polym. Sci.

90, 3638–3645.

Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A., 2013a.

Mechanical and thermal properties of environmentally

friendly composites derived from sugar palm tree. Mater. Des.

49, 285–289.

Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A., 2013b.

Thermo-mechanical behaviors of thermoplastic starch derived from

sugar palm tree (Arenga pinnata). Carbohydr. Polym. 92, 1711–

1716.

Sam-Brew, S., Smith, G.D., 2015. Flax and hemp fiber-reinforced

particleboard. Ind. Crop Prod. 77, 940–948.

Santiago, R., Ismail, H., Hussin, K., 2011. Mechanical properties,

water absorption and swelling behaviour of rice husk powder filled

PP/recycled acrylonitrilebutadiene rubber (PP/NBRp/RHP) bio-

composites using silane as a coupling agent. Bioresources 6, 3714–

3726.

Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., Sahari, J.,

2015. Effect of plasticizer type and concentration on tensile,

thermal and barrier properties of biodegradable films based on

sugar palm (Arenga pinnata) starch. Polymers (Basel) 7, 1106–1124.

Serrano, A., Espinach, F.X., Tresserras, J., del Rey, R., Pellicer, N.,

Mutje, P., 2014. Macro and micromechanics analysis of short fiber

composites stiffness: the case of old newspaper fibers-polypropy-

lene composites. Mater. Des. 55, 319–324.

Shalwan, A., Yousif, B.F., 2013. In state of art: mechanical and

tribological behaviour of polymeric composites based on natural

fibres. Mater. Des. 48, 14–24.

Sinclair, R., 2015. Understanding textile fibres and their properties:

what is textile fibre? In: Sinclair, R. (Ed.), Textiles and Fashion:

Materials, Design and Technology. Woodhead Publishing, UK, pp.

3–27, ISBN: 978-1-84569-931-4.

Sindhuphak, A., 2007. Bioproducts of automotive accessories: rethink-

ing design materials through corn starch, sugarcane and hemp.

KMITL Sci. Tech. J. 7, 160–170.

462 Z. Kovačević et al.
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Abstract. Properties of lignocellulosic Spartium junceum L. (SJL) fibres were investigated in 

order to use them as reinforcement in composite material production. The fibres were obtained 

by microwave maceration process and additionally modified with NaOH, nanoclay and citric 

acid with the aim to improve their mechanical, thermal and other physical-chemical properties. 

Tensile and thermal properties of these natural fibres were enhanced by the different 

modification treatment which is investigated by the Vibrodyn/Vibroskop method and 

thermogravimetric analysis (TGA), whilst determination of chemical composition and fibre’s 

surface properties were explored using scanning electron microscope (SEM), electron dispersive 

spectroscopy (EDS) and elektrokinetic analyser. All the results show great improvement of 

nanoclay/citric acid modified SJL properties.  

1.  Introduction 

The rapidly increasing environmental awareness and growing global waste problem affected the 

development concepts of sustainability and renewable materials. Due to the need for finding renewable 

solutions in the development of new materials, the usage of composite materials made of biopolymer 

matrices and natural fibres that are in the service of reinforcement is increasing significantly. 

Considering they are durable, safe and have excellent mechanical properties [1], composite materials 

reinforced with natural fibers are mostly used in automotive industry [2] in the function of panels, seats, 

etc. Usage of such materials is favored by the Directive 2000/53/EC of European Union which requires 

that by 2015th, member countries have to reuse a minimum of 95 % of waste vehicle which ensure that 

less than 5 % of the waste vehicle would be landfilled [3, 4].  

Although, bast fibres have been grown for centuries throughout the world, their production is 

nowadays much higher in order to meet the demands of global market and to produce recyclable, 

renewable, ‘green’ products. Some of the most used bast plants are: flax, hemp, kenaf, ramie, jute, etc. 

Whilst flax and hemp have mostly been used as textile raw material of cellulosic origin in plains, in 

coastal areas of the Mediterranean wild Spartium junceum L. - SJL has been used as textile raw material 

since ancient times [5]. Aim of this research was to investigate modified SJL fibres in order to use them 

as reinforcement in composite materials. 
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2.  Experimental 

2.1.  Materials 

Spartium junceum L. fibers were obtained from the SJL plant which was harvested in the area of town 

Šibenik, Croatia. NaOH pellets (purity ≥ 97 %), Nanoclay (MMT modified with 25 - 30 wt % 

octadecylamine), Citric acid (CA) and Sodyum Hypophosphite Hydrate (NaH2PO2) used for this study 

were obtained from Sigma-Aldrich Company Ltd., UK.   

2.2.  Methods 

Methods for determining the content of cellulose, lignin and hemicellulose were conducted in 

compliance with the regulations previously described in Antonović et al. 2007 [6]. Chemical analysis of 

modified fibres was conducted with scanning electron microscope (Mira, Tescan) and Quantax EDS 

(Bruker). Breaking tenacity and fineness of individual fibres were examined using the Vibroskop and 

Vibrodyn devices (Lenzing Instruments). Pyris 1 TGA (Perkin Elmer) thermogravimetric analyzer was 

used for determination of thermal degradation on samples we were investigated. Additional 

characterization of fibres surface before and after modification was collected by zeta potential 

determined using the electrokinetic analyzer SurPASS (Anton Paar GmbH) based on the streaming 

potential method. 

 

3.  Results and discussion 

Spartium junceum L. fibres were modified by different chemical pre-treatments. Tensile strength results 

of reference fibres (RF), additionally alkali-treated fibres (1F), MMT/NaOH-treated fibres (2F) and 

MMT/CA-treated fibres (3F) are given in Table 1. Tenacity results of samples 2F and 3F indicate 

improvement in strength while fibres modified additionally with NaOH (1F) showed relatively lower 

strength value, compared with RF sample, which is probably due to the repeated alkali treatment 

resulting in additional delignification of fibres resulting in weaker or damaged fibre [7]. 

 

Table 1. Tenacity, fineness and elongation of reference and modified fibres, data in brackets represent 

standard deviations. 

Sample 
Tenacity  

(cN/tex) 

Fineness  

(dtex) 

Elongation   

(%) 

RF a 64.44 (11.24) 36.75 (11.28) 6.03 (1.14) 

1F b 60.00 (8.28) 35.76 (9.50) 6.70 (1.29) 

2F c 68.84 (9.58) 34.25 (9.33)  8.39 (1.26) 

3F d 67.40 (8.84) 37.19 (9.22) 7.62 (1.44) 

a The reference fibres 

b The fibres treated with NaOH 

c The fibres treated with MMT 

d The fibres treated with MMT and CA 

 

Relative chemical composition of Spartium junceum L. fibres was obtained by using energy 

dispersive X-ray (EDS) spectroscopy. EDS spectra is acquired by selecting energy requirement in KeV 

for Kα emission at x-axis and relative abundance on y-axis [8]. EDS analysis has proven the existence 

of Si and Al (nanoclay) atoms in both samples (2F and 3F) and quantitative analysis shows that sample 

(2F) has 1.8 % wt. of Si atoms and 0.5 % wt. of Al atoms, while sample (3F) has 11.5 % wt. of Si and 

3.2 % wt. of Al atoms, respectively (Figure 1) which might be due to the formation of crosslinking 

caused by the interaction between the CA and hydroxyl groups of cellulose. 

SEM micrographs of Spartium junceum L. reference and modified fibres show that the surface of RF 

fibre (1a) was smooth and regular in comparison to the surface of fibre R1 (1b) where roughness at the 

surface was a little bit increased caused by additional treatment of technical fibre with NaOH.  Figure 1 
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c) and 1 d) show fibres treated with MMT and MMT/CA respectively. The roughness of the fibres 

surface was increased with the addition of nanoclay which is especially visible in the 3F sample.  

  

a) b) 

  

c) d) 

Figure 1. EDS spectra and SEM images of a) RF; b) 1F; c) 2F and, d) 3F. 

 

In order to investigate hydrophilic/hydrophobic nature of Spartium junceum L. fibres, their ζ-

potential- pH dependence was determined in 1 mM KCl electrolyte solution. Figure 2 shows different 

ζ-potential plateau values for all the tested fibres regarding their different treatment (modification). 

Variation of electrokinetic properties within investigated SJL fibres is expected since any treatment of 

fibres will affect the chemical fibre composition (cellulose, hemicellulose, pectine, lignin, waxes, etc.) 

and increase the accessibility of dissociable hydroxyl groups [9, 10], therefore causing more negative ζ-

plateau value compared to RF. RF and 2F fibres have a small negative ζ-potential plateau values and 

both of them display a rapid increase of the negative ζ-potential below pH 5. Rapid increment of ζ-

potential of 2F goes to more negative values indicating presence of nanoclay particles on the fibre 

surface, also visible by the scanning electron microscope observations, Figure 1c  [7]. Cellulosic fibres 

have isoelectric point (IEP) values, where ζ-potential=0, at low pH values (around pH 2, extrapolated) 

and the ζ-plateau values in the alkaline range. Modification of RF fibres additionally with NaOH (1F) 

resulted in a shift in the IEP to slightly higher pH values (IEP 2.15) but also to slightly increased negative 

ζ-potential values in the alkaline range. Since all the tested fibres have nearly the same chemical 
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structure based on cellulose, the IEP is almost identical for all of them (IEP ~2). Samples 1F and 3F 

show almost no difference in the surface properties depending on the different treatment, indicating their 

enhanced and ‘’open’’ structure for the possible treatments. Modification of 3F fibre lead to surface 

roughening [7] resulting in the more negative ζ-potential. 

 
Figure 2. ζ-potential- pH dependence of reference and modified Spartium junceum L. fibres. 

 

Table 2. Chemical composition of reference and modified Spartium junceum L. fibres. 

 

Sample  Cellulose [%] Hemicellulose [%] Lignin [%] 

RF 91.83 ± 0.13 2.99 ± 0.33 3.42 ± 0.29 

1F 90.07 ± 0.48 5.76 ± 0.68 3.30 ± 0.23 

2F 92.03 ± 0.11 4.11 ± 0-23 3.20 ± 0.32 

3F 92.39 ± 0.07 2.62 ± 0.18 3.98 ± 0.21 

    

The composition of the fibres obtained under different treatments is reported in Table 2. All the tested 

fibres show content of cellulose higher than 90 % and content of lignin between 3 and 4 % indicating 

very well conducted maceration and modification process [7] in comparison to the other results found 

in the literature [11, 12].  

The influence of different treatment on the thermal properties of the Spartium junceum L. fibres was 

investigated by TGA as shown in Figure 3. Significant weight loss occurred when the temperature is 

between 290 and 430 °C due to the thermal decomposition of hemicellulose, cellulose and lignin. 

Decomposition temperature values for RF, 1F, 2F and 3F fibres were 380 °C, 380 °C, 377 °C and 375 
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°C, respectively showing earlier start of decomposition temperature for MMT treated fibres. The 

analysis of higher temperature (higher than 500 °C) decomposition of fibres showed improved thermal 

stability for the MMT treated fibres, regarding their residual weight after thermal treatment at 800 °C. 

The improvement could be attributed to the presence of clays in the treated fibres.  

 

Figure 3. TGA curves of reference and modified Spartium junceum L. fibres. 

Conclusion 

Spartium junceum L. fibres were modified with NaOH, nanoclay and citric acid with the aim of their 

usage as reinforcement in the natural fibre reinforced composite materials to improve their mechanical 

and thermal properties.  

Tensile testing results indicate improvement in strength of MMT treated fibres. Thermal stability 

was also enhanced due to different modification treatment, although better flame retardancy was 

expected for the MMT treated fibres especially MMT/CA treated fibres regarding their crosslinked 

structure. 

SEM/EDS analysis of modified fibres proved adsorption of nanoclay particles on the surface of 

MMT modified fibres. Nanoclay skeleton is composed mostly of Silicon, second most is oxygen, third 

most aluminum and others are: carbon, magnesium, iron and sodium. Morphology of 3F fibres indicates 

melioration of nanoclay dispersion thus improvement of further surface properties.      

ζ-potential measurements together with other characterization methods provide better insight in the 

surface properties of SJL fibres and enable further manipulation during modification process with the 

aim of better adhesion between the fibre and the matrix in the composite material. 
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1 Introduction 

We are aware nowadays of pros (low density, environmentally friendly, renewable, less 
cost materials) and cons (sensitivity to moisture, large variation of properties, limited 
length, poor compatibility between the fibres and the matrix) for the usage of natural 
fibres as reinforcement in composite materials. The most common application of these 
materials is in construction and automotive industry. Natural fibre reinforcements are 
generally divided into wood (most commonly used in building and construction) and  
non-wood fibres (flax, Spartium junceum L., etc.) which are the materials of choice for 
automotive applications [1]. The usage of natural fibre reinforced composites (NFRC) in 
automotive industry is favoured by the Directive 2000/53/EC of European Union.  
In order to make NFRC even more attractive to automotive producers, it is necessary to 
improve their properties such as: uniformity in fibre properties, better adhesion between 
the fibre and the matrix, UV resistance, moisture repellence and flame retardancy. 
Improvements in mechanical properties are visible comparing our previous research [2,3] 
with the present results. 

2 Experimental 

PLA polymer (6200D) was obtained from Nature Works LLC while montmorillonite clay 
(MMT) and NaOH were purchased from Sigma-Aldrich, UK. Spartium junceum L. was 
collected in Croatia, in the area of the town of Šibenik. 

Fibres obtained by the maceration process with NaOH carried out in a microwave 
oven are used as reference fibres (R). Fibres were modified with NaOH (1), MMT (2) 
and a mixture of MMT and citric acid – MMT/CA (3) in order to improve composite 
interfacial, mechanical and thermal properties. Polymer was melted in the vacuum oven 
at 170°C and hot pressed together with 20 wt. % of short fibres in a compression 
moulding machine at 170°C under 1 tonne pressure for 5 minutes. 
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Micromechanical characterisation of composites and prediction of its tensile strength 
(σC) and tensile modulus (EC) were performed on the basis of mathematical models: 
Modified rule of mixtures with Cox-Krenchel equations and Hirsch model. According to 
the literature [4,5] applied models are most commonly used in the case of short fibre 
randomly oriented composites. 

3 Results and discussion 

Fibre surface treatment is one of the possible ways to enhance the properties of the 
natural fibre reinforced composites. Mechanical properties of Spartium junceum L. fibres 
differ after various chemical modifications. Tensile strength results of the nanoclay 
treated samples indicated improvement in strength compared to the reference fibres [3]. 

Figure 1 presents stress-strain curves of composite materials reinforced with R, 1, 2 
and 3 fibres. Pure PLA material breaks at lower strain than others, indicating its brittle 
nature. Furthermore, tensile strength of pure PLA proved to be very low. Introduction of 
modified fibres and additives resulted in significant increase in its mechanical properties. 
Improvements in strength of 136.8%, 141.2%, 12.0% and 164.0% were observed for 
composite materials CR, C1, C2 and C3, respectively, in comparison to the pure PLA. 
The reason for low mechanical properties of the sample C2 was attributed to the decrease 
of interface bond between fibre and matrix, caused by larger amount of air voids 
observed inside the C2 sample [3]. Figure 2 shows a comparison of the experimental and 
theoretical tensile strength and tensile modulus values. Tensile strength of matrix within 
modified rule of mixtures (mRoM) was calculated by interpolating the stress-strain curve 
of PLA matrix while other parameters are presented in Table 1. 

The behaviour of tensile stress until fluency point fitted the following equation for 
any strain (ε): σM = –1.6464 ε2 + 16.264 ε – 0.235. 

Figure 1 Stress-strain curves of pure PLA and CR, C1, C2, and C3 composite materials  
(see online version for colours) 

 

Since the fibres are arranged in planar random fashion, the efficiency factor in RoM 
model was expressed according to Fu and Lauke [6] for the prediction of the tensile 
strength values and using Cox-Krenschel model for the tensile modulus values, while the 
length and interface factor can be obtained through knowing interfacial shear strength and 
critical fibre length [4,7]. The obtained value of the interfacial shear strength, considering 
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the matrix strength and according to Von Mises criterion, was 10.21 MPa. This criterion 
predicted (τ) value quite well, provided the composites were correctly bonded [4].  
The mean fibre length (L) was assumed to be 2.5 mm since it was already reported in the 
literature that composite production technology and processes influence the decrease of 
fibre length inside the composite material [7]. The Cox-Krenschel model uses parameters 
such as: β, which is the coefficient of stress concentration rate at the ends of the square 
packing fibres, L stands for the fibre length inside the composite material, r is the fibre 
radius and ν the Poisson’s ratio of the matrix, which is assumed to be 0.36 for PLA 
matrix [4,5]. Properties such as the tensile strength of the fibre (σF) and matrix (σM), 
volume fractions of the fibre (VF) and matrix (VM), as well as the tensile modulus of fibre 
(EF) and matrix (EM) are the fundamental quantities to be used to predict composite 
properties. The Hirsch model is a combination of parallel and series models where β is 
the parameter that determines the fibre-matrix stress transfer and markedly differs from 
the Cox-Krenschel’s β. According to the literature [5], β is influenced by the fibre 
orientation and stress concentration effects at the fibre ends. The values of β = 0.4 and 0.1 
have been most usually reported as the values that adequately reproduce results obtained 
experimentally for natural fibre composites but the agreement between the experimental 
and theoretical values in the case of composites reinforced with randomly oriented fibres 
was found only when β = 0.1. 

Figure 2 (a) Experimental and predicted tensile strength values in NFC; (b) experimental and 
predicted tensile modulus values in NFC (see online version for colours) 

 

Table 1 Equations and parameters used in modified rule of mixtures (mRoM) 

  
Orientation 
factor (η0) Length factor (η1) 

Fibres 
diameter 
(dF) (μm)  

m
R

oM
 

Tensile strength (σC) 

σC = η0*η1*σF*VF + σM*VM 

0.375 

[6,7] 

η1 = (τ*LF)/(dF*σF) CR 

C1 

55.26 

54.62 

Young’s modulus (EC) 

EC=η0*η1*EF*VF + EM*VM 

0.2 

[3,6] 

η1 = 1 – (tanh((β*LF)/2)/(β*LF)/2) 

β = 1/r√(EM/(EF(1 – v)Ln√(π/4*VF))) 

C2 

C3 

53.45 

55.78 

Predicted tensile strength values of mRoM were higher than experimental ones which  
is the consequence of bonding quality between the fibres and matrix and fibres 
discontinuity. The compatibility factor fC was found to be a good indicator of the 
interface quality. In well bonded composites the values were within the range 0.16–0.20 
[4]. Our fC results for CR, C1, C2 and C3 composites were 0.18, 0.19, 0.17, and 0.17, 
respectively, indicating good interface which is not in the agreement with the previous 
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results of low strength for the C2 sample (12% of increment in strength compared to pure 
PLA, which denoted inapropriate interface). Hirsch model offers good correlation 
between the experimental and theoretical results. Predicted tensile strength values were 
ca. 10% lower than the experimental values, except for the C2 sample. It can be assumed 
that the interface quality in this sample was very poor, in comparison with C3 sample, 
where citric acid (CA) has been added as an eco-friendly crosslinker with a positive 
impact on flame retardant properties of cellulose fibres [3]. Predicted tensile modulus 
values were higher than experimental values, except for the C3 sample, where predicted 
values were 30% and 20% lower for mRoM and Hirsch model, respectively. The reasons 
which may affect predicted results are: usage of models which fit well enough for 
randomly oriented fibrous reiforcement but are developed for homogenous and isotropic 
fibres [1] and formation of microvoids between the fibre and matrix [5]. 

4 Conclusion 

Modified Spartium junceum L. fibres were used as reinforcement in the NFRC materials 
with the aim to improve their mechanical properties. Tensile strength and tensile modulus 
of the composite reinforced with MMT and CA treated Spartium fibres (C3) were 
increased by 164.0% and 85.7% respectively, compared to pure PLA sample. Obtained 
results confirmed improvements of mechanical properties of applied samples in 
comparison to our previous series – reinforced with unmodified fibres and without any 
crosslinker. A comparison of experimental and theoretical results of NFRC tensile 
properties was conducted using modified Rule of Mixtures and Hirsch model. The 
predicted values of tensile properties were only comparable with the experimental 
coefficient of variation in the case of CR sample, while the predicted values of tensile 
strength showed partially good agreement only for Hirsch model. Further improvements 
of novel biocomposites require the enhancement of the affinity between hydrophilic fibre 
(nanoclay modified Spartium junceum L. fibres) and hydrophobic PLA matrix. 
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ABSTRACT  

 

Spanish Broom (Spartium junceum L.) is a Mediterranean plant of various usage possibilities. Its 

fibres were known since ancient time but in some point of last century, more accurately in 1950s, 

their production was abandoned due to the negative economic effect. Another drawback was large 

time consumption, especially during the old tradition method – Spanish Broom maceration in salt 

water. Nowadays, due to technology development and ecological awareness, it is much easier to 

produce Spanish Broom fibres of enhanced quality. One of the fibre extraction methods is the one 

assisted with microwave oven. Demerit of such fibre production is in large residue content after 

obtaining fibres - approx. 90 % of initial Spanish Broom weight. 

Due to the need for finding sustainable solutions in the development of new materials, the usage of 

Spanish Broom fibres in the service of reinforcement for biopolymer poly (lactic acid) (PLA) 

matrix was investigated. Obtained results target our further research into the direction of Spanish 

Broom fibres and PLA application in the production of green composites. The aim of this research 

was to prove that developed product can be categorized under the biodegradable group by 

investigating its degradation properties using serine endopeptidase enzyme. The results show 

positive degradation effect while using 50 wt.% (on weight of material) enzyme concentration 

during a 5-day treatment. 

Stem residues of Spanish Broom plant derived from salty water and microwave maceration were 

further investigated for their potential as raw material for second-generation biofuel production. 

Examination of its energy properties consisted of determination of proximate and ultimate 

properties of the biomass. The results show low moisture content (6.5 % - 7.5 %), ash content 

below 5 % and higher values of fixed carbon and volatile matter content of 13.2 % and 75 %, 

respectively. Higher heating values that were determined (17.2 - 18.8 MJ/kg) indicate a high quality 

biomass that can be used most effectively in solid biofuel production. 

 

Keywords: Spartium junceum L., Spanish Broom, poly(lactic acid), composites, biodegradation, 

Savinase enzyme, biomass, solid biofuel 
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INTRODUCTION  

 

Spartium junceum L. (SJL) is a shrub-like 

Mediterranean plant from the family of 

legumes, Figure 1. It is the only species in the 

genus Spartium L. It grows up to 1 – 1.5 m, 

whereas only older plants grow into smaller 

trees between 4 to 5 m of height and 15 to 20 

cm of thickness. It produces intensively yellow 

flowers, between May and July, and its shoots 

mature between August and October [1]. Its 

flowers, seeds, stem, leaves and even root are 

used for the production of natural dyestuff or 

oil, the latest being used both for the 

nutritional purposes, as well as for the essence 

of perfumes and scents [1]. 

 

 
 

Figure 1. Representation of SJL plant and its 

structural above ground axis, which is raw 

material for fibre production; Left to right: SJL 

shrub during bloom; Freshly harvested SJL 

stem; Scanning electron micrograph of SJL 

fibres extracted from the SJL stem [1] 

 

SJL plant belongs to Fibre crops group based 

on the Agriculture crop classification, and 

therefore it has been recognized as excellent 

raw material for fibre production [2]. Wide 

distribution of fibre crops is based on the fact 

that such crops manage to grow in all climate 

environments (except extremely dry and cold 

conditions) whose diversity could influence 

the fibre properties. Therefore, each climate 

region has one or more fibre crop varieties, 

which could be utilized delivering economic 

benefits to rural areas. 

 

SJL fibres belong to the group of bast fibres, 

sharing similar physico-chemical and 

mechanical properties with flax fibre which is 

representative of the bast fibre group [3]. The 

importance of fibre crops has been known 

since ancient time in terms of raw materials for 

garment production or textile products like 

ropes [1]. Nowadays, the interest is focused on 

their usage in agriculture, construction, 

medicine, automotive or chemical industry [4 - 

6]. 

Kovacevic et al. [7] investigated usage of SJL 

fibres as reinforcement in polymer matrix for 

possible application in automotive industry. 

One of the critical issues of novel research 

targeting products to be used in automotive 

industry is application of green and 

biodegradable materials [8]. Due to the need 

for finding renewable solutions in the 

development of new materials, the usage of 

composite materials made of biopolymer 

matrices and natural fibres, that are in the 

service of reinforcement, is increasing 

significantly. These materials are relatively 

cheap, they have specific properties, 

contributing to the neutralization of CO2, and 

they are biodegradable. Although PLA is 

biodegradable, the basic understanding of its 

enzymatic degradation related to its blending 

with another biodegradable polymer still 

requires better understanding [9 - 12]. 

 

However, both fibre and green composites’ 

production, results in large quantities of 

residues. In 2013, during Summer school 

‘’From Production to final Use’’, Cosentino 

[13] reported on SJL yield as naturally 

occurring or cultivated crop in the overall 

areas of 2.5 – 5.0 t ha
-1

 and 4.0 – 7.5 t ha
-1

, 

respectively. The fibre yield is usually 

between 7 - 12 %, depending upon the variety 

from which it is extracted. These residues, 

obtained after fibre soaking, are in the liquid 

form as well as in the crude form, and from the 

aspect of current global circular economy and 

bioeconomy strategies, they should be 

managed somehow. 

 

Hence, the aim of this research was to 

determine biodegradability of SJL/PLA 

composite material, and to gain knowledge in 

the potential of utilizing crude residues after 

SJL fibre extraction for energy production via 

direct combustion [14].  
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EXPERIMENTAL 

 

Materials 

 

SJL fibres were obtained from the Spanish 

Broom plant, which was harvested in the area 

of town Šibenik, Croatia. The plant was 

collected in the wilderness of nature and 

harvesting was done by hand using specialized 

scissors. After fibre extraction through several 

maceration processes [15 - 17], the plant 

residue was collected and air-dried for further 

investigation as biomass for solid biofuel 

production. 

 

Materials used for biodegradability test were 

already prepared composite materials made of 

PLA, SJL fibres and Montmorillonite 

nanofiller (MMT) which were subjected to 

enzymatic degradation [17, 18]. The Fluka 

buffer solutions were used for setting of pH 

9.0 (borax/hydrochloric acid). Enzyme 

Savinase 16 L was obtained from Strem 

Chemicals, Inc. It belongs to class of 

proteases, more accurately it is serine 

endopeptidase that catalyses selective 

hydrolysis of ester bonds. It is in liquid form 

with optimum conditions being 30 - 70 °C, pH 

8 - 10 and activity of 16 Kilo Novo Protease 

Unit KNPU (S/g). 

 

 

Biodegradability  

 

The weights of the samples were measured 

prior to immersing them in separate vials 

containing approx. 1 mL of buffer (pH 9) and 

Savinase enzyme. The buffer solution was 

prepared in a 25 mL flask by adding 2.66 ∙ 10
-5

 

mol/mL CaCl2, 5 mL 1 % Triton solution and 

100, 250 and 500 mg respectively of Savinase 

enzyme, while pH 9 buffer was added to the 

25 mL mark on the volumetric flask. Since 

measurements were made on the basis of 5 

parallel tests, every single test vial was filled 

up with 1 mL of buffer/enzyme solution 

containing 4, 10 and 20 mg of Savinase and 

approx. 20 mg of investigated composite 

material. The enzymatic degradation was 

performed in the laboratory oven operated at 

37 °C for 5 days. 

Prior to immersing into the enzyme solution, 

the samples were cut into rectangular shape 

and weighed. The samples were than dried in 

an oven (Elektrosanitarij, Croatia) at 105 ± 5 

°C until reaching the constant mass. Every 24 

hours, upon immersing into the enzyme 

solution, samples were thoroughly washed 

with deionised water and dried again in an 

oven at 105 ± 5 °C for 24 hours. The weights 

of the samples after enzymatic degradation 

were measured and the effect of the enzymatic 

degradation was determined after 24, 72 and 

120 hours by weight loss. The percentage of 

weight loss after enzymatic degradation 

(∆m24,72,120) was calculated according the 

equation (1): 

 

  ∆m24, 72, 120 = (Wi - W24, 72, 120)/Wi ∙ 100      (1) 

 

where Wi is the initial weight measured after 

oven drying at 105 ± 5 °C; W24, 72, 120 is the 

weight after enzymatic degradation within a 

certain time (24 h, 72 h and 120 h). 

 

 

Biofuels properties 

 

Residue samples after fibre extraction were 

grounded in a laboratory grinder (IKA 

Analysentechnik GmbH, Germany). Three 

replicates of each sample were measured in 

order to provide reproducibility of the 

analysis. The biomass samples were analysed 

according to following standard methods: 

moisture content (HRN EN 18134-2:2015), 

ash content (HRN EN ISO 18122:2015), coke 

content and volatile matter (HRN EN 

15148:2009) and fixed carbon (by difference). 

Carbon, hydrogen, nitrogen and sulphur were 

determined by the method of dry combustion 

in a Vario Macro CHNS analyser (Elementar 

Analysensysteme GmbH, Germany) according 

to the standard methods HRN EN 15104:2011 

and HRN EN 15289:2011, while oxygen 

content was calculated by difference according 

to the following formula, where db stands for 

dry basis: 

 

   O (% db ) = 100 – C(% db) – H(% db) –    

        N(% db) – S(% db) – ash (% db)          (2) 
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Heating value was determined according to the 

HRN EN 14918:2010 standard method by 

using an oxygen bomb calorimeter (IKA C200 

Analysentechnik GmbH, Germany). Heating 

value is presented as MJ/kg on dry basis. 

 

 

 

RESULTS AND DISCUSSION  

 

Description of used samples is presented in 

Table 1.  

 

Table 1. Description of samples and test 

conditions in biodegradability examination 
 

Zero sample Enzyme Time 

PLA – neat 

polymer 

Savinase 16 L 

– serine 

endopeptidase 

Concentrations: 

20 %, 50 % 

and 100 % on 

weight of zero 

material. 

Test 

conditions: pH 

9, T = 37 °C 

Samples 

were 

exposed 

to 

enzymatic 

treatment 

for 24, 72 

and 120 

hours 

CR – composite 

material made of 

PLA and SJL 

(reference - 

untreated) fibres 

C1 - composite 

material made of 

PLA and SJL 

(NaOH treated) 

fibres 

C2 - composite 

material made of 

PLA and SJL 

(MMT nanoclay 

treated) fibres 

C3 - composite 

material made of 

PLA and SJL 

(MMT and citric 

acid CA treated) 

fibres 

 

The results of pure PLA and its composites 

biodegradability are shown in Figure 2. A 

biodegradation experiment was conducted in 

the period of five days. According to the 

weight loss measurements it could be 

concluded that fibre reinforcements increased 

the degradation rate compared to neat PLA. 

Biodegradation rate of PLA composites 

depends on the biodegradability of all 

components and the nature of their miscibility 

[9]. It has been already concluded in our 

previous research that due to weak adsorption 

force between the clay particles and the fibre 

surface - Sample C2 show inappropriate 

interface properties, which influences faster 

degradation of such composite material. By 

comparing used enzyme concentrations, it is 

visible that the best results were obtained with 

50 % Savinase enzyme after 5 days of 

treatment. Recent study of Singh et al. [10] 

showed that the incorporation of MMT into 

PLA increased the biodegradation rate and the 

effect depends on the organic modifier used in 

the clays, thus degradation depends on the 

presence of excess –OH groups in the MMT 

and its dispersion through matrix which is also 

visible through experiment group 50%E120h. 

 

Katović et al. investigated properties of SJL 

fibres and their associated residues after 

various extraction methods – traditional sea 

water retting and microwave assisted alkali 

retting [15]. They have compared chemical 

composition content of SJL stem before and 

after fibre extraction and found out that 

chemical composition of residue after 

extraction depends on the chosen extraction 

method. Microwave assisted alkali treated 

residues have shown increase in cellulose and 

lignin content compared to sea water retted 

residues for approximately 5 % and 14 %.  

 

Considering such increase in lignin content 

and the fact that after SJL fibre extraction 

approx. 90 % of residue remains unused, we 

came to the point for further investigation of 

possible usage of SJL residues as feedstock in 

bioenergy production. 

 

In order to achieve solid biofuel 

standardization, ISO TC 238 is working on 

drafting and publishing of international solid 

biofuel standards, which set out the expected 

values of fuel properties for various types of 

biomass, i.e. proximate and ultimate analysis 

and determination of heating values [19]. 

 

The non-combustible and combustible 

properties of the SJL residues after fibre 

extraction by sea water retting and microwave 

assisted alkali retting are shown in Tables 2 

and 3. 
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    a)                b) 
 

   
 

    c)                d) 
 

 
 

e) 
 

Figure 2. Weight loss percentage of PLA and its composites after enzymatic degradation,  

symbol explanations in Table 1 

 

 

Table 2. Non-combustible matter content in the SJL residues after fibre extraction 
 

 MC (%, db) AC (%, db) FC (%, db) Coke (%, db) Nitrogen (%) 

0 6.45 a ± 0.156 2.38 a ± 0.095 7.60 a ± 2.705 9.98 a ± 2.698 0.97 a ± 0.022 

Sea Water 7.46 b ± 0.133 4.37 b ± 0.301 10.47 a ± 1.897 14.84 a ± 1.819 0.39 b ± 0.012 

Microwave 6.53 a ± 0.092 4.77 b ± 0.045 13.22 a ± 2.701 18.00 ba  ± 2.668 0.18 c ± 0.004 

Significance < 0.05* < 0.05* 0.3160 NS < 0.05* < 0.05* 

 

where db – dry basis; MC – moisture content; AC – ash content; FC – fixed carbon; Different letters 

within a column indicate significant differences at the 5 % level; significance 
*
 p < 0.05, NS – non 

significant. 
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Table 3. Combustible matter content with higher and lower heating values in  

the SJL residues after fibre extraction 
 

 
Carbon 

(%) 

Sulphur 

(%) 

Hydrogen 

(%) 

Oxygen 

(%) 

VM 

(%, db) 

HHV 

(MJ/kg) 

LHV 

(MJ/kg) 

0 
46.51 a ± 

0.167 

0.28 a ± 

0.039 

7.12 a ± 

0.062 

45.12 a ± 

0.044 

83.50 b ± 

2.60 

18.83 a ± 

0.058 

17.28 a ± 

0.057 

Sea Water 
43.46 c ± 

0.127 

0.29 a ± 

0.010 

6.07 a ± 

0.918 

49.80 a ± 

0.793 

77.76 a ± 

1.85 

17.23 a ± 

0.122 

15.90 ba ± 

0.121 

Microwave 
44.13 b ± 

0.039 

0.18 ab ± 

0.007 

6.76 a ± 

0.000 

48.75 ba ± 

0.050 

75.52 a ± 

2.64 

18.16 a ± 

1.112 

16.69 a ± 

1.112 

Significance < 0.05* < 0.05* 0.1467 NS < 0.05* < 0.05* 0.0907 NS 0.1293 NS 

 

where db – dry basis; VM – volatile matter; HHV – higher heating value; LHV – lower heating 

value; Different letters within a column indicate significant differences at the 5 % level; 

significance * p < 0.05, NS – non significant. 

 

All samples show significant difference in the 

non-combustible matter content, except fixed 

carbon values, where the content is not 

affected by different method of fibre 

extraction. The latter was proven by the 

ANOVA analysis. Fixed carbon represents 

covalently bonded carbon where higher 

content of bonded carbon correlates with the 

higher quality of biomass [20]. 

 

Moisture content is important for the purpose 

of the raw material storage [21]. Residues after 

microwave assisted extraction show no 

significant difference in moisture content 

compared to samples prior to fibre extraction. 

It is usually advised to keep the moisture 

content in biomass within the limits of 10 - 15 

% since higher moisture content can cause 

endothermic reaction [21, 22]. 

 

Ash is undesirable component of biomass, 

considering its catalytic influence on thermal 

decomposition. Higher ash amount points to 

higher carbon and gas concentrations. Melting 

point of biomass ash is low, so during thermal 

process melted ash produces slagging, which 

prevents energy transfer and lowers 

combustion efficiency [20]. The obtained ash 

content of residues after different fibre 

extractions show no significant difference. Its 

content is approx. 4.5 %, which is within the 

expected limits, since SJL belongs to 

herbaceous and agricultural biomass group 

that commonly reveals higher ash content than 

wood biomass, because of different chemical 

composition and higher mineral share, such as 

potassium, calcium, magnesium or 

phosphorus, which are ash-forming elements 

[23]. 

 

Coke content is considered as positive 

property of biomass and in Table 2 an increase 

in coke content for residues after microwave 

assisted extraction process can be observed. 

 

The proximate analysis of two different 

biomass samples derived from different 

extraction methods show that volatile matter 

content is reduced while fixed carbon content 

increased, pointing to lower concentrations of 

light hydrocarbons like CO, CO2, H2, moisture 

and tars in the samples which underwent 

microwave assisted extraction of fibres [21-

23]. 

 

Table 3 shows that by increasing carbon and 

hydrogen content, higher heating value also 

increases because C and H oxidised during 

combustion by exothermic reactions 

(formation of CO2 and H2O) [24]. The highest 

heating values were obtained for residues after 

microwave assisted fibre extraction, with HHV 

of 18.16 MJ/kg and related LHV of 16.69 

MJ/kg. 

 

Although, SJL biomass from residues after 

fibre extraction show satisfying properties for 

solid biofuel production. It could be also pre-

treated by using biomass torrefaction 

technology through which physical or 

chemical characteristics of biomass are 

modified on purpose, before it is used for final 
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conversion into a useful energy carrier. Such 

pre-treatment significantly reduces chlorine 

and other undesirable components of raw 

biomass making it more suitable for power 

generation in pulverised coal fired power 

plants [25]. 

 

 

 

CONCLUSION 

 

In this paper, Spanish Broom products in the 

form of composite material reinforced with its 

fibres and in the form of residues left after 

fibre extraction were investigated.  

 

Biodegradation of PLA/SJL composites has 

been successfully performed by using 

Savinase 16 L enzyme for 5 days. The best 

results regarding loss of weight were obtained 

by 50 % of enzyme concentration which is in 

fact too high quantity to be used for enzymatic 

treatments. Therefore, further research will be 

carried out with several different enzymes 

suitable for the degradation of PLA and 

natural fibres. Although, biodegradable plastic 

won’t solve all the problems related to plastic, 

hopefully it will reduce the environmental 

impact compared to fossil-based plastic. 

 

Since the most important role of Spanish 

Broom crop is its utilization for the bast fibre 

production, a huge disadvantage is in organic 

residue left after the fibre extraction that 

represents almost 90 wt% of initial stem 

weight from which fibres were extracted. In 

present day we are witnessing the rise of 

biomass energy industry since the European 

Commission has set a long-term goal to 

develop a competitive, resource efficient and 

low carbon economy by 2050. 

 

Based on the obtained results of moisture, ash, 

fixed carbon, coke, volatile matter, nitrogen, 

sulphur, carbon, hydrogen and oxygen content, 

as well as the obtained heating values, it can 

be concluded that the residues after fibre 

extraction can be further utilized as raw 

material for solid biofuel production in order 

to achieve more efficient and sustainable 

production, leading to EU goals of circular 

economy and bioeconomy.  

 

From the results obtained in this study, it can 

be concluded that Spanish Broom besides its 

application in biocomposites’ production, is 

also a promising crop for various applications 

in biofuels industry. 
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