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Abstract: Quaternary salts of pyridoxal oxime have been synthesized by the quaternization 

of pyridoxal oxime with substituted phenacyl bromides using microwave heating. 

Microwave-assisted rapid synthesis was done both in solvent (acetone) and under  

solvent-free conditions. Good to excellent yields (58%–94%) were obtained in acetone in 

very short reaction times (3–5 min) as well as in the solvent-free procedure (42%–78%) in 

very short reaction times (7–10 min) too. Effective metodologies for the preparation of 

pyridoxal oxime quaternary salts, having the advantagies of being eco-friendly, easy to 

handle, and performed in shorter reactions time are presented. The structure of compound 

7, in which a 4-fluorophenacyl moiety is bonded to the pyridinium ring nitrogen atom, was 

unequivocally confirmed by the single-crystal X-ray diffraction method. 

Keywords: eco-friendly quaternization; microwave synthesis; phenacyl bromides; 

pyridoxal oxime 
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1. Introduction 

The development of cleaner technologies is a major emphasis in green chemistry. Among the 

several aspects of green chemistry, avoiding the use of volatile organic solvents in the reaction 

medium is recommended. The use of the large excesses of conventional volatile solvents required to 

conduct a chemical reaction creates ecological and economical concerns. Therefore the search for a 

nonvolatile and recyclable alternative, as well as performing reactions without solvents has a key role 

in this field of research [1]. 

During recent years, microwaves (MW) have been extensively used for carrying out chemical 

reactions and have become a useful non-conventional energy source for performing organic synthesis. 

The application of microwaves in chemistry is extremely attractive and, from the very beginning it was 

realized that a number of chemical processes can be carried out with substantial reduction of the 

reaction time in comparison to conventional methods [2]. 

Several papers have been reported on the alkylation of N-containing heterocycles [3–6]. The first 

solventless quaternization via microwave heating has been described for preparation of variety of ionic 

liquids [1]. Perez and coworkers have described the N-alkylation of azoles with 4-bromophenacyl 

bromide under MW irradiation under solvent-free conditions. The results obtained showed high yields 

and selectivity [7]. 

Organophosphorus compounds are widely used in agriculture as insecticides, in industry and 

technology, as well as in military technology as chemical warfare agents (sarin, soman, tabun). They 

are extremely potent inhibitors of the enzyme acetylcholinesterase (AChE) that is responsible for the 

termination of the action of acetylcholine at cholinergic synapses [8,9]. There are many commonly 

used reactivators of inhibited AChE, such as 2-pralidoxime, trimedoxime, and toxogonin [10–12]. 

Unfortunately, none of the currently used oximes is sufficiently effective against all inhibitors and 

there is no single reactivator having the ability to reactivate inhibited enzyme, regardless of the 

inhibitor chemical structure [13,14]. 

Previously, we synthesized a series of novel pyridinium oximes and tested them as reactivators of 

AChE inhibited by organophosphosphorus compounds tabun and paraoxon [15]. In view of the 

emerging importance of the quartenary salts as antidotes, antibacterial and anticancerogenic agents and 

our general interest in microwave-assisted chemical processes, we decided to explore the synthesis of 

those compounds using MW irradiation in the presence of solvents and under solvent-free conditions. 

In our earlier paper [15] we prepared a series of novel pyridinium oximes under classical conditions. 

These reactions have some major disadvantages, including long reaction times (1–3 weeks), the usage 

of large amounts of solvents, etc. For these reasons we decided to use MW technology, as a 

nonconventional method for their synthesis. Herein, we report an efficient method for the preparation 

of quaternary salts that simply involves exposing neat reactants to MW using a Milestone single-mode 

microwave reactor. 

2. Results and Discussion 

In this article two MW techniques are presented: MW irradiation in the presence of solvent 

(acetone) and MW irradiation under solvent free-conditions. The work up was easy and the products 
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were obtained in excellent to moderate yields (as shown in Table 1). This method is efficient, versatile 

and generates little waste. The results clearly demonstrate quaternization by the classical method is 

possible as well as via the MW irradiation method, but the synthetic efficiency was significantly 

different, as evidenced by the data of Table 1. Scheme 1 outlines the synthesis of 2–10. Optimum 

conditions for carrying out the MW-assisted quaternizations were ascertained by carrying out a series 

of reactions of pyridoxal oxime with substituted phenacyl bromides. The results showed that 

maximum yield of 94% was obtained by microwave-assisted procedure in acetone for 5, while 

maximum yield of 79% was obtained in MW solvent-free procedure for 6. All the products were 

crystalline crude products.  

Scheme 1. A general schematic representation for the preparation of quaternary salts of 

pyridoxal oxime.  

 

Table 1. The optimized conditions in the synthesis of quaternary salts under MW heating 

in acetone A and solvent-free procedure B as well as under classical heating. 

Compound R 
MW (A) MW (B) Conventional [15] 

t/min Yield (%) t/min Yield (%) t/weeks Yield (%)

2 4'-Cl 5 75 10 63 3 66 
3 4'-Br 4.5 90 10 74 3 44 
4 4'-H 5 74 7 53 1 38 
5 4'-CH3 4 94 8 76 1 62 
6 4'-NO2 4.5 80 10 79 1 60 
7 4'-F 3 70 10 48 3 36 
8 4'-OCH3 5 90 10 71 3 67 
9 4'-Ph 5 79 10 46 1 46 
10 2'-OCH3 5 58 10 42 12 12 

Interestingly, the same reactions carried out under conventional conditions using acetone, methanol and DMF 

as a solvents gave 2–10 in lower yields, and required significantly longer reaction time [15].  

The syntheses were done in a Milestone controllable single-mode microwave reactor. The reactor is 

equipped with a magnetic stirrer as well as temperature and power controls. The effect of microwave 

irradiation on a set of reactions using pyridoxal oxime and substituted phenacyl bromides as reactants 

was examined. Under these conditions a very efficient, fast, and practical method for the preparation of 

quaternary salts was developed. The time required to synthesize the salts compared to conventional 

method is strongly reduced. 
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In case of the microwave-assisted reactions using organic volatile solvents, the reactants are usually 

dissolved in the solvent, which often couples effectively with microwaves and thus acts as the energy 

transfer medium. Acetone was selected as MW solvent because the highest yield has been obtained 

with it compared to those obtained in DMF and methanol via the conventional technique [15].  

The reaction carried out in acetone via MW irradiation required a maximum of 5 min of irradiation. 

The white and light yellow color of the reactants turned yellow brownish as the mixing and  

irradiation progressed.  

In the microwave-assisted quaternizations in acetone the products required no rigorous purification 

and pure products were obtained by simple recrystallization from an appropriate solvent. Therefore, 

this method offers an easy practical access for the production of a series of quaternary salts. 

Solvent-free methods are especially adapted to organic synthesis under green chemistry conditions. 

When coupled to MW irradiation, these methods result in very efficient and noticeable improvements 

over classical methods. The absence of solvent reduces the risk of explosions, moreover, aprotic 

solvents with high boiling points are expensive and difficult to remove from the reaction mixtures. 

This solvent-free approach requires only a few min of reaction time in contrast to few weeks under 

conventional heating conditions. Although this synthesis offers several advantages over traditional 

methods, there is still need for improving the postsynthetic treatment where solvents are also used. 

Quaternization of pyridoxal oxime with substituted phenacyl bromides was accelerated under MW 

irradiation. Adsorption of reactant molecules on the surface of silica gel was promoter force for this 

reaction. It was interesting that without silica gel added the reaction was not successful. The silica gel 

surface was an active catalyst for reaction of quaternization in this solventless procedure. In spite of 

the fact that “dry” microwave procedure demand easy work up it is obvious that purification in 

procedure done in acetone is increasingly shorter and less rigorous. The solventless quaternization 

MW procedure requires only a few min of reaction time but purification was quite longer as compared 

with MW procedure in acetone due to the presence of starting materials and some byproducts. 

The lowest yields in both the solvent-free method (42%) and in acetone (58%) was obtained for the 

quaternization of pyridoxal oxime with 2-bromo-1-(4-metoxyphenyl)ethanone. This low yield can be 

explained by the existence of an ortho-methoxy substituent in the electrophile which prevents attack 

on the pyridoxal oxime at the nitrogen atom due to steric hindrance.  

The structure of compound 7 was unequivocally confirmed by single-crystal X-ray diffraction 

method. In 7 (Figure 1), the 4-fluorophenacyl moiety is bonded to the pyridinium ring N1 atom. The 

C2-N1-C6 bond angle in the pyridinium ring is widened [123.2(2)°]. However, sum of the endocyclic 

bond angles is 720°, as expected for aromatic six-membered ring. The bond lengths and angles agree 

quite closely with equivalent ones in structures of 3-hydroxy-4-hydroxyiminomethyl-5-

hydroxymethylpyridinium derivatives [16,17]. The C2 ring atom is in synclinal position with respect 

to the C11 atom of the phenacyl moiety [C2−N1−C10−C11 = 77.2(3)°]. This indicates that phenyl ring 

is rotated with respect to the pyridinium ring, as also shown by the dihedral angle between mean ring 

planes of 55.38(13)°. 
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Figure 1. A molecular structure of 7, with the atom-numbering scheme. Displacement 

ellipsoids for non-hydrogen atoms are drawn at the 50% probability level. 

 

In the cation, one strong O−H···N intramolecular hydrogen bond [O1···N2 = 2.579(3) Å] forms 

six-membered ring, and one C−H···O intramolecular hydrogen bond [C6···O3 = 2.648(3) Å] generates 

five-membered ring (Figure 1). 

The pyridinium cation and bromide are linked by various intermolecular interactions. Two 

pyridinium cations and two bromides are assembled by one strong O−H···Br− hydrogen bond 

[O3···Br1 = 3.451(2) Å] and two C−H···Br− hydrogen bonds [C10···Br1 = 3.667(3) Å; C6···Br1 = 

3.817(3) Å], so forming ring consists of two cations and two anions (Figure 2).  

Figure 2. Crystal packing diagram along the a axis, showing three-dimensional network 

formed by O−H···Br−, C−H···Br−, C−H···O and C−H···F intermolecular hydrogen bonds. 

Bromides are presented in ball and stick style. 
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This ring is further linked by O−H···Br−, C−H···O i C−H···F hydrogen bonds [O2···Br1 = 3.131(2) Å; 

C8···O2 = 3.479(3) Å; C16···O4 = 3.486(4) Å; C7···F1 = 3.136(4) Å] into three-dimensional network. 

One π...π interaction participates also in supramolecular assembling. The phenyl rings of the 

neighbouring molecules are mutually parallel [α = 0°], a centroid separation is 3.6374(17) Å, an 

interplanar spacing ca 3.33 Å and offset ca. 1.46 Å. 

3. Experimental Section 

3.1. General Information  

All reactions were performed using a, Microwave Synthesis Labstation Start S controllable  

single-mode microwave reactor (Milestone, Shelton, CT, USA). The reactor is equipped with a 

magnetic stirrer as well as a temperature and power controls (220 V/50–60 Hz, 2.4 kW). Solvents and 

reagents were purchased from Fluka (Milwaukee, WI, US) and Aldrich (St. Luis, MO, US) and used 

without further purification. TLC was done by using chloroform–methanol (6:1.5, v/v) as the 

developing solvent. The silica gel (Aldrich, 0.063–0.200 nm; 70–230 mesh) was used in solvent-free 

method. IR spectra were measured on a FTIR-8400S spectrophotometer (Shimadzu, Kyoto, Japan) in 

KBr pellets. 1H-NMR and 13C-NMR spectra were measured on a XL-GEM 300 spectrophotometer 

(Varian, Rheinstetten, Germany) in DMSO-d6 solutions and chemical shifts are reported in δ values 

downfield from TMS as an internal standard. The compounds are also characterized by elemental analyses. 

Melting points were determined with a SMP3 melting point apparatus (Stuart, Staffordshire, UK).  

3.2. General Procedure for the Synthesis of Compounds 2–10 with MW Procedure A  

Pyridoxal oxime (0.18 g; 1 mmol) was dissolved in acetone (50 mL) at 50 °C. The reaction mixture 

was cooled to room temperature, and substituted phenacyl bromide was added (1 mmol). The mixture 

was placed in the Milestone single-mode microwave reactor and irradiated at with starting power at  

440 W and reaction temperature 56 °C until TLC analysis has shown the presence of the product. 

When the irradiation was stopped the mixture was left in the dark to cool and the crystalline crude 

product was collected by filtration under reduce pressure and recrystallized from appropriate solvent.  

3.3. General Procedure for the Solvent-Free Synthesis of Compounds 2–10 with MW Procedure B 

Pyridoxal oxime (0.18 g; 1 mmol) and substituted phenacyl bromide (1 mmol) was added into the 

mortar and the mixture was grinded with pestle in the presence of silica gel (500 mg) for 10 min. The 

mixture was placed in the microwave reactor and irradiated with a starting power at 440 W and 

reaction temperature 70 °C until TLC has shown the presence of the product. Reaction times are 

reported in the Table 1. The mixture was dissolved in hot acetone. Silica gel was removed from the 

mixture by filtration under reduced pressure and residual crude was collected by filtration under 

reduced pressure and recrystallized from appropriate solvent. All products were analyzed by 1H- and 
13C-NMR, IR spectroscopy and elemental analyses. 
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3.4. Characterization Data 

1-(4-Chlorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide 

(2). Yellow solid; Rf value: 0.18 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization from 

methanol 230–233 °C; FT-IR (KBr) νmax: 3385, 3073–2858, 1688, 1637–1589, 1261, 1051–1003 cm−1; 
1H-NMR: δ 12.78 (1H, bs, NOH), 8.67 (1H, bs, OH), 8.59 (1H, s, H-6), 8.14–8.11 (2H, d,  

J = 8.62 Hz, H-2', H-6'), 7.77–7.74 (2H, d, J = 8.58 Hz, H-3', H-5'), 6.89 (2H, s, CH2CO), 5.84 (1H, 

bs, CH2OH), 4.81 (2H, s, CH2OH), 2.51 (3H, s, CH3); 
13C-NMR: δ 189.82 (C, C=O), 152.55 (C, C-3), 

145.46 (C, C-2), 139.65 (C, C-6), 137.28 (C, C-4), 135.10 (C, C-4'), 132.25 (C, C-1'), 130.43 (C-2',  

C-6'), 129.76 (C-3', C-5'), 128.98 (C, C-5), 64.48 (CH2CO), 58.47 (CH2OH), 13.32 (CH3); MS (m/z): 

415.0 [M]+ (54.16), 335.2 (43.05, Br), 333.0 (100), 302.8 (39.58), 164.1 (36.11); Anal. Calcd. for 

C16H16N2O4BrCl: C 46.23, H 3.88, N 6.74; Found: C 46.34, H 3.86, N 6.72%.  

1-(4'-Bromophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide 

(3) Yellow solid; Rf value: 0.27 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization from 

ethyl acetate 195–198 °C; FT-IR (KBr) νmax: 3385, 3073-2849, 1686, 1636–1456, 1261, 1049–980 cm−1; 
1H-NMR: δ 12.99 (1H, bs, NOH), 8.66 (1H, bs, OH), 8.63 (1H, s, H-6), 8.04–8.01 (2H, d, J = 8,61 Hz, 

H-2', H-6'), 7.92–7.89 (2H, d, J = 8.55 Hz, H-3', H-5'), 6.61 (2H, s, CH2CO), 5.88 (2H, s, CH2OH), 

4.81 (1H, s, CH2OH), 2.3 (3H, s, CH3); 
13C-NMR: δ 190.02 (C, C=O), 152.47 (C, C-3), 145.44 (C,  

C-2), 137.28 (C, C-6), 135.11 (C, C-4), 132.56 (C, C-4'), 132.06 (C, C-1'), 130.43 (C-2', C-6'), 128.93 

(C-3', C-5'), 128.16 (C, C-5), 64.37 (CH2CO), 58.46 (CH2OH), 13.28 (CH3); MS (m/z): 460.8 [M]+ 

(17.48), 379.1 (100), 361.1 (39.16), 349.1 (39,86), 199.0 (34.96), 160.7 (39.16); Anal. Calcd. for 

C16H16N2O4Br2 : C 41.77; H 3.50; N 6.09; Found: C 41.96, H 3.61, N 5.97%. 

3-Hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-phenacylpyridinium bromide (4). Yellow 

solid; Rf value: 0.26 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization from methanol  

250–251 °C; FT-IR (KBr) νmax: 3275, 3107–2727, 1701, 1636–1449, 1229, 1084–980 cm−1; 1H-NMR: 

δ 12.47 (1H, bs, NOH), 11.52 (1H, bs, OH), 8.62 (1H, s, H-6), 7.72–7.70 (2H, d, J = 7.98 Hz, H-2',  

H-6'), 7.39–7.36 (2H, d, J = 8.16 Hz, H-3', H-5'), 6.00 (2H, s, CH2CO), 4.67 (2H, s, CH2OH), 2.51 

(1H, s, CH2OH), 2.50 (3H, s, CH3). 
13C-NMR: δ 190.70 (C, C=O), 152.50 (C, C-3), 137.21 (C, C-2), 

135.11 (C, C-6), 135.10 (C, C-4), 130.44 (C, C-4'), 128.30 (C-2', C-6'), 128.26 (C, C-1'), 128.10, (C-3', 

C-5'), 127.82 (C, C-5), 59.67 (CH2CO), 58.44, (CH2OH), 13.25 (CH3); MS (m/z): 381.0 [M]+ (83), 

299.3 (100), 281.4 (52.45), 269.2 (37.06), 161.0 (47.55), 106.0 (31.46); Anal. Calcd. for C16H17N2O4Br: 

C 50.41, H 4.49, N 7.35, Br 20.96; Found: C 50.58, H 4.33, N 7.48, Br 20.93%. 

3-Hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4-methylphenacyl)pyridinium bromide 

(5). Yellow–light brown solid; Rf value: 0.22 (chloroform‒methanol, 6:1.5, v/v); mp after 

crystallization from methanol 240–241.5 °C; FT-IR (KBr) νmax: 3385, 3064–2853, 1684, 1636–1541, 

1234, 1088–980 cm−1; 1H-NMR: δ 12.87 (1H, bs, NOH), 8.67 (1H, bs, OH), 8.62 (1H, s, H-6),  

8.03–8.00 (2H, d, J = 8.22 Hz; H-3', H-5'), 7.48–7.46 (2H, d, J = 8.07 Hz, H-2', H-6'), 6.42 (2H, s, 

CH2CO), 4.81 (2H, s, CH2OH), 2.51, (1H, s, CH2OH), 2.49 (3H, s, CH3), 2,23 (3H, s, CH3). 
13C-NMR: 

δ 190.06 (C, C=O), 152.49 (C, C-3), 145.50 (C, C-2), 145.31 (C, C-6), 137.24 (C, C-4), 135.19 (C,  

C-4'), 129.34 (C-2', C-6'), 128.59 (C, C-1'), 128.10 (C-3', C-5'), 127.80 (C, C-5), 64.42 (CH2CO), 
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58.43 (CH2OH), 13.25 (CH3); MS (m/z): 395.2 [M]+ (100), 313.0 (44.37), 295.5 (21.83), 264.8 

(22.54), 162.1 (33.09), 132.9 (22.54); Anal. Calcd. for C17H19N2O4Br: C 51.66, H 4.85, N 7.09, Br 

20.22; Found: C 51.65, H 4.83, N 7.27%. 

3-Hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-nitrophenacyl)pyridinium bromide 

(6). Reddish brown solid; Rf value: 0.16 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization 

from ethyl acetate 235–237 °C; FT-IR (KBr) νmax: 3347, 3069–2862, 1715, 1604–1528, 1217,  

1032–1001 cm−1; 1H-NMR: δ 12.54 (1H, bs, NOH), 8.66 (1H, bs, OH), 8.62 (1H, s, H-6), 8.59–8.53 

(2H, d, J = 8.10 Hz, H-3', H-5'), 8.47–8.39 (2H, d, J = 8.12 Hz, H-2', H-6'), 6.51 (2H, s, CH2CO), 4.82 

(2H, s, CH2OH), 4.67 (1H, bs, CH2OH), 2.29 (3H, s, CH3); 
13C-NMR: δ 190.12 (C, C=O), 152.55 (C, 

C-3), 150.68 (C, C-2), 146.90 (C, C-6), 145.60 (C, C-4), 145.51 (C, C-4'), 138.59 (C, C-1'), 138.23 (C, 

C-2', C-6'), 137.36 (C-3', C-5'), 130.05 (C, C-5), 64.68 (CH2CO), 58.54 (CH2OH), 13.34 (CH3); MS (m/z): 

425.1 [M]+ (5.63), 344.0 (100), 326.1 (31.69), 314.3 (21.13), 164.0 (52.81), 161.0 (36.62), 106,7 (26.76); 

Anal. Calcd. for C16H16Br N3O6: C 45.09, H 3.78, N 9.86, Br 18.75; Found: C 44.70, H 4.00; N 9.67%. 

1-(4-Fluorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide 

(7). Brown solid; Rf value: 0.31 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization  

from ethyl acetate 225–225,5 °C; FT-IR (KBr) νmax: 3447, 3064–2359, 1699, 1599–1456, 1233,  

1063–1001 cm−1; 1H-NMR: δ 12.95 (1H, bs, NOH), 8.66 (1H, bs, OH), 8.56 (1H, s, H-6), 8.21–8.18 

(2H, d, J = 8.82 Hz, H-2', H-6'), 7.52–7.49 (2H, d, J = 8.82 Hz, H-3', H-5'), 6.26 (2H, s, CH2CO), 5.38 

(2H, s, CH2OH), 4.67 (1H, s, CH2OH), 2.27 (3H, s, CH3). 
13C-NMR δ 189.31 (C, C=O), 164.17 (C,  

C-3), 145.50 (C, C-2), 145.44 (C, C-6), 137.29 (C, C-4), 131.73 (C, C-4'), 131.62 (C-2', C-6'), 130.30 (C, 

C-1'), 128.13 (C-3', C-5'), 128.10 (C, C-5), 64.32 (CH2CO), 58.49 (CH2OH), 13.25 (CH3); MS (m/z): 399.2 

[M]+ (53.52), 319.1 (9.86), 317.25 (100), 299.1 (30.28), 287.3 (36.62), 137.0 (32.39), 133.0 (36.62); Anal. 

Calcd. for C16H16BrFN2O4: C 48.14, H 4.04, N 7.02, Br 20.02; Found: C 47.53, H 4.22, N 6.95%. 

3-Hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4-methoxyphenacyl)pyridinium bromide 

(8). Light brown solid; Rf value: 0.21 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization from 

ethyl acetate 267–268 °C; FT-IR (KBr) νmax: 3383, 3042–2843, 1676, 1638–1516, 1244, 1045–980 

cm−1; 1H-NMR: δ 13.00 (1H, bs, NOH), 8.66 (1H, bs, OH), 8.56 (1H, s, H-6), 8.13 (2H, s, CH2CO), 

8.08- 8.05 (2H, d, J = 8.34 Hz; H-3', H-5'), 7.20 – 7.17 (2H, d, J = 8.97 Hz; H-2', H-6'), 6.55 (2H, s, 

CH2OH), 4.83 (1H, bs, CH2OH), 3.91 (3H, s, OCH3), 2.51 (3H, s, CH3). 
13C-NMR: δ 188.73 (C, 

C=O), 164.42 (C, C-3), 145.52 (C, C-2), 145.33 (C, C-6), 137.25 (C, C-4), 135.11 (C, C-4'), 130,97 

(C-2', C-6'), 128.05 (C, C-1'), 128.32 (C-3', C-5'), 127.80 (C, C-5), 64.10 (CH2CO), 58.47 (CH2OH), 

13.21 (CH3); MS (m/z): 411.2 [M]+ (96.5), 331.0 (3.49), 329.35 (100), 311.0 (17.48), 299.1 (42.65), 

134.0 (57.34), 106.0 (60.84); Anal. Calcd. for C17H19N2O5Br: C 49.65, H 4.66, N 6.81, Br 19.43; 

Found: C 49.79, H 4.46, N 6.83, Br 19.35%.  

3-Hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-phenylphenacyl)pyridinium bromide 

(9). Yellow solid; Rf value: 0.39 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization from 

methanol 227–228 °C; FT-IR (KBr) νmax: 3397, 3075–2789, 1691, 1604–1451, 1237, 1088–995 cm−1; 
1H-NMR: δ 13.02 (1H, bs, NOH), 12.78 (1H, bs, OH), 8.64 (1H, s, H-6), 8.19–8.166 (2H, d, J = 8.43 

Hz, H-3', H-5'), 8.00–7.97 (2H, d, J = 8.43 Hz, H-2', H-6'); 7.58–7.45 (5H, m, Ph), 6.64 (2H, s, 
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CH2CO), 4.81 (2H, s, CH2OH); 4.75 (1H, bs, CH2OH), 2.50 (3H, s, CH3); 
13C-NMR: δ 190.13 (C, 

C=O), 152.46 (C, C-3), 146.02 (C, C-2), 145.49 (C, C-4), 145.38 (C, C-6), 142.86 (C, C-4'), 138.45 

(C-2', C-6'), 138.05 (C, C-1'), 137.30 (C-3', C-5'), 136.83 (C, C-5), 64.40 (CH2CO), 58.48 (CH2OH), 

13,22 (CH3); MS (m/z): 457.1 [M]+ (100), 375.3 (87.41), 357.3 (15.38), 345.0 (31.12), 164.3 (62,23); 

Anal. Calcd. for C22H21N2O4Br: C 57.78, H 4.63, N 6.13, Br 17.47; Found: C 57.63, H 4.46, N 6.03%. 

3-Hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(2-methoxyphenacyl)pyridinium bromide 

(10). Brown solid; Rf value: 0.36 (chloroform‒methanol, 6:1.5, v/v); mp after crystallization from 

methanol 217–219 °C; FT-IR (KBr) νmax: 3309, 3102–2949, 1674, 1597–1437, 1252, 1055–980 cm−1; 
1H-NMR: δ 12.95 (1H, bs, NOH), 8.67 (1H, bs, OH), 8.61 (1H, s, H-6), 7.86–7.84 (2H, d, J = 6.03 Hz 

H-3', H-5'), 7.36–7.33 (2H, d, J = 8.40 Hz H-2', H-6'), 7.66 (2H, s, CH2CO), 6.53 (1H, bs, CH2OH), 

4.80 (3H, s, OCH3), 4.04 (2H, s, CH2OH), 2,51 (3H, s, CH3); 
13C-NMR: δ 190.26 (C, C=O), 159.98 

(C, C-3), 145.58 (C, C-2), 145.51 (C, C-6), 145.19 (C, C-4), 137.09 (C, C-4'), 136.97 (C, C-1'), 136.27 

(C-2', C-6'), 130.25 (C-3', C-5'), 128.00 (C, C-5), 67.86 (CH2CO), 58.45 (CH2OH), 13.19 (CH3); anal. 

C 49.65, H 4.66, N 6.81, Br 19.43% calcd for C17H19N2O5Br C 49.60, H 4.65, N 6.58%. 

3.5. Crystal Structure Determination 

Single crystal of 7 suitable for X-ray single crystal analysis was obtained at room temperature  

by partial evaporation from ethyl-acetate solution. The intensities were collected on a Oxford 

Diffraction Xcalibur2 diffractometer (Zagreb, Croatia) with a Sapphire 3 CCD detector using  

graphite-monochromated MoKα radiation (λ = 0.71073 Å) at 150 K. The CrysAlisPro [18] program 

was used for the data collection and processing. The intensities were corrected for absorption using the  

multi-scan absorption correction method [18]. The structure was solved by direct methods with 

SIR2004 [19] and refined by full-matrix least-squares calculations based on F2 using SHELXL-97 [20] 

integrated in WinGX [21] program package. Hydrogen atoms of oxygen O1, O2 and O3 atoms have 

been found in Fourier map and their coordinates and thermal isotropic parameters have been refined 

freely. All other hydrogen atoms were treated using appropriate riding models, with SHELXL-97 

defaults [20]. PLATON [22] and Mercury [23] programs were used for structure analysis and 

molecular and crystal structure drawings preparation. The CCDC 990857 contains the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Crystal and refinement data 

for 7: C16H16BrFN2O4, Mr = 399.22; triclinic space group P1 (No. 2); a = 6.7128(3), b = 8.1316(4),  

c = 15.9969(8) Å; α = 94.964(4), β = 92.224(4), γ = 111.877(5)°; V = 804.89(7) Å3; Z = 2;  

dx = 1.647 g cm−3; θmax = 27.0°; RInt = 0.0290; S = 1.004; R[I ≥ 2σ(I)] = 0.0357, wR[all data] = 0.0991; 

0.698 < ∆ρ < −0.760 eA−3. 

4. Conclusions 

In conclusion, a comparative study of the quaternization reaction of pyridoxal oxime with a series 

of substituted phenacyl bromides under microwave irradiation is reported in this paper. The 

preparation of quaternary pyridininium salts under microwave irradiation proved to be a fast, 

environmentally friendly, and facile method. The microwave irradiation provided a remarkable rate of 
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acceleration for N-alkylation, reaction times decreased dramatically, the consumed energy decreased 

considerably, the yields are higher and this method could be considered as eco-friendly.  

The MW method performed in acetone offered easier work up, cleaner products and higher yields. 

The solvent-free method was more eco-friendly because there was no solvent used in the synthesis, but 

the disadvantage is longer work up, use of solvents in the post-synthetic stage, and less cleaner 

products. One of the primary goals of the future experiment will be elimination of solvents from the 

post-synthetic stage after solventless quaternization. The X-ray structure analysis of 7 shows that the 

bond lengths and angles present no unexpected features, and that phenyl ring is rotated with respect to 

the pyridinium ring. Several types of intermolecular hydrogen bonds and one π...π interaction link 

cation and bromides into three-dimensional network. The continuation of this work to determine 

antibacterial, antifungal and antidotal activity of the novel synthesized compounds is in progress.  

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/6/7610/s1. 
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